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Abstract

Purpose –The aim of this study is to investigate subject independent emotion recognition capabilities of EEG
and peripheral physiological signals namely: electroocoulogram (EOG), electromyography (EMG),
electrodermal activity (EDA), temperature, plethysmograph and respiration. The experiments are conducted
on both modalities independently and in combination. This study arranges the physiological signals in order
based on the prediction accuracy obtained on test data using time and frequency domain features.
Design/methodology/approach – DEAP dataset is used in this experiment. Time and frequency domain
features of EEG and physiological signals are extracted, followed by correlation-based feature selection.
Classifiers namely – Naı€ve Bayes, logistic regression, linear discriminant analysis, quadratic discriminant
analysis, logit boost and stacking are trained on the selected features. Based on the performance of the
classifiers on the test set, the best modality for each dimension of emotion is identified.
Findings – The experimental results with EEG as one modality and all physiological signals as another
modality indicate that EEG signals are better at arousal prediction compared to physiological signals by
7.18%, while physiological signals are better at valence prediction compared to EEG signals by 3.51%. The
valence prediction accuracy of EOG is superior to zygomaticus electromyography (zEMG) and EDA by 1.75%
at the cost of higher number of electrodes. This paper concludes that valence can be measured from the eyes
(EOG) while arousal can bemeasured from the changes in blood volume (plethysmograph). The sorted order of
physiological signals based on arousal prediction accuracy is plethysmograph, EOG (hEOGþ vEOG), vEOG,
hEOG, zEMG, tEMG, temperature, EMG (tEMGþ zEMG), respiration, EDA, while based on valence prediction
accuracy the sorted order is EOG (hEOG þ vEOG), EDA, zEMG, hEOG, respiration, tEMG, vEOG, EMG
(tEMG þ zEMG), temperature and plethysmograph.
Originality/value – Many of the emotion recognition studies in literature are subject dependent and the
limited subject independent emotion recognition studies in the literature report an average of leave one subject
out (LOSO) validation result as accuracy. The work reported in this paper sets the baseline for subject
independent emotion recognition using DEAP dataset by clearly specifying the subjects used in training and
test set. In addition, this work specifies the cut-off score used to classify the scale as low or high in arousal and
valence dimensions. Generally, statistical features are used for emotion recognition using physiological signals
as a modality, whereas in this work, time and frequency domain features of physiological signals and EEG are
used. This paper concludes that valence can be identified from EOG while arousal can be predicted from
plethysmograph.
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1. Introduction
Subject independent emotion recognition using single or multiple modalities is a burgeoning
area of research in affective computing. Emotion recognition (ER) plays a vital role in human
computer interaction (HCI) as it tries to make HCI, similar to human–human interaction (HHI)
by incorporating ER and emotion expression capabilities in machines. The distinguishing
feature between HCI and HHI is the ER and emotion expression capabilities of humans.

Humans recognize others’ emotions via facial expression and contextual information in
day-to-day life. Emotions serve as evolved communication and hence should evoke behaviors
that reveal the subjects’ emotional state to others [1]. The emotional state of a person can be
inferred from behavior in face, voice, whole-body and observer ratings. James’s emotion
theory [2] states that emotional response can be measured using peripheral physiological
signals. Some of the peripheral physiological signals used in ER are electrodermal activity
(EDA), cardiovascular activity and respiration activity. Cannon’s emotion theory [3] suggests
that emotions are derived from subcortical centers, and this led to the study of emotional
responses of central nervous system (CNS) signals using EEG, neuroimaging techniques and
electrooculogram (EOG).

Subject dependent unimodal and multimodal ER provides considerable accuracy, while
subject independent ER needs improvement. One aspect that hinders baseline of subject
independent ER models is the non-availability of subject independent test sets for the
publicly available multimodal ER datasets. Many of the subject independent ER studies in
the literature provide an average of leave one subject out (LOSO) validation score as final
accuracy. In this work, the test subjects used for validation of the model are specified
explicitly so that any future work can use these model scores as a baseline.

Subject independent ER capabilities of time and frequency domain features of EEG and
peripheral physiological signals, namely EOG, EMG, EDA, temperature, plethysmograph
and respiration both independently and in combination on the DEAP dataset in arousal and
valence dimensions using classifiers - Naı€ve Bayes, logistic regression, linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), logit boost and stacking are explored
in this research. Through this research work, it is found that, from an ergonomic perspective,
valence can bemeasured from the eyes while arousal can be measured from changes in blood
volume. The model scores of this work can be used as a baseline for future work as this work
reports the results on a truly subject independent test set.

2. Related works
The recent advances inmultimodal ER are in the areas of feature extraction, feature selection,
modeling and fusion strategies. Multimodal ER involves three important aspects: extracting
shared representations from multiple modalities, removing redundant features and learning
key features from each modality. To address all three aspects, multimodal deep belief
network (MDBN) was investigated [4]. Recent studies in the literature used global average
pooling [5], deep belief network (DBN) [6] and multi-hypergraph neural network [7] to
investigate the aspect of correlation among features in multimodal ER. The optimal
combination of features play a significant role in multimodal ER and was studied using
multi-kernel learning approach [8] and deep learning based hierarchical feature fusion
approach [9]. Recent studies have explored the significance of features in ER [10].

The body of work in literature has explored the feature extraction ability of deep learning
networks for end-to-end ER architectures and its performance was determined by the
strength of the input signals [11]. Deep learning architectures like ensemble convolution
neural network (ECNN) [5], DBN [6], inception ResNet v2 [12], spiking neural networks (SNN)
[13], autoencoder [14], hierarchy modular neural network (HMNN) [15], MDBN [16], transfer
learning [17], transformer-based architecture using CNN [17] and high resolution network
(HRNet) [18] were explored for ER.
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Decision level fusion versus feature level fusion is a long-standing contention in the field of
multimodal ER. The decision level fusion improves the accuracy by 5% in comparison to
unimodal accuracy [19], whereas the feature level fusion provides ER accuracy comparable to
decision level fusion with less computation time [10]. Some of the literature [10, 12, 19]
reported LOSO validation score as final accuracy which is a limitation in subject
independent ER.

The work reported in this paper sets the baseline for subject independent ER using DEAP
dataset by clearly specifying the subjects used in training and test set. In addition, this work
specifies the cut-off score used to classify the scale as low or high in arousal and valence
dimensions. Generally, statistical features are used for ER using physiological signals as a
modality, whereas in this work, time and frequency domain features of physiological signals
and EEG are used. The experiment is conducted on both modalities independently and in
combination. This work arranges the physiological signals in order based on the prediction
accuracy obtained on test data using time and frequency domain features.

3. Materials and methods
DEAPdataset is used to compare the prediction ability of time and frequency domain features of
EEG and physiological signals over a similar set of classifiers and to sort the physiological
signals. In this experiment, two ensemble classifiers – logit boost and stacking and two
statistical classifiers – Naı€ve Bayes and QDA are used. All four classifiers are used
independently and in combination of EEG and physiological signals. The feature selection and
training of classifiers are performed using Weka software [20]. The proposed methods for
arousal andvalenceprediction inmultimodal andunimodal environments are shown inFigure 1.

3.1 DEAP dataset description
DEAP [21] dataset has EEG and peripheral physiological signal recordings of 32 participants
(16 for each gender). The signals were recordedwhen the participants watchedmusic video of
length one minute. Each participant watched a subset of 40 music videos and rated the
valence, arousal, dominance and liking of each video. For each trial, 32 channels of EEG
signals and 12 channels of peripheral signals were recorded using Biosemi active two system
at 512 Hz.

Proposed Unimodal ER Method for
Arousal Dimension

EEG Signal (32 Channels)

Pre-processing

Time & Frequency Domain Feature 
Extrac�on

Feature Selec�on using Best First
Strategy

Stacking

Output Class Labels - LA, HA
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3.2 Evaluation measures
The evaluation metrics used to compare different models in this experiment are accuracy and
F1-score. Additional metrics, namely ROC area and kappa statistic are reported for the
proposed methods.

3.2.1 Accuracy. Accuracy is the measure of correctly classified instances. The accuracy
percentage ranges from 0 to 100, where 100 is the best possible accuracy and is shown in
equation (1).

Accuracy ¼ True Positiveþ TrueNegative

True Positiveþ False Positiveþ TrueNegativeþ False Negative
(1)

3.2.2 F1-score. F1-score is the harmonic mean of precision and recall. The range of F1-
score varies from 0 to 1, where 0 is theworst possible score and 1 is the best possible score and
is shown in equation (2). F1-score gives better measure of incorrectly classified instances.

F1� score ¼ 2 *
Precision *Recall

Precisionþ Recall
(2)

3.2.3 ROC area.The area under the ROC curvemeasures the ability of the binary classifier
to distinguish between classes. The value ranges from 0 to 1, where 1 implies the classifier is
able to perfectly distinguish between the classes.

3.2.4 Cohen’s kappa. Cohen’s kappa values range from�1 to 1, where 1 implies the model
is good. A kappa value of 0 indicates that the model is as good as a chance classifier.

3.3 Training and test dataset split
The dataset is split into subject independent training and test sets in the ratio of 70:30. The
data of 22 participants is used as training set, while the remaining data of 10 participants is
used as test set. Subjects – s02, s04, s05, s09, s15, s20, s23, s28, s29 and s30 are used in the test
set while the rest of the subjects are used in the training set.

3.4 Labeling strategy
As the objective is to train classifiers using supervised learning, the continuous scale ratings
of valence and arousal are converted into labels by splitting the continuous scale. The scale
range [0, 5.0] is considered as low,while (5.0, 9.0] is considered as high. The scale value of 5.0 is
chosen as the split point as the mean value of the ratings lie approximately around 5.0. The
labeling strategy and distribution of labels across the training and test sets are shown in
Table 1.

3.5 Pre-processing
The DEAP dataset provides the pre-processed data and is explained in this sub-section. The
EEG signals were down-sampled to 128 Hz and EOG artefacts were removed. Bandpass filter
with frequency range of 4.0 to 45.0 Hz was applied. The EEG data were averaged to common

Attribute Scale range Label Training set [Count (%)] Test set [Count (%)]

Valence >50 and <55 LV 398 (45.23%) 174 (43.50%)
Valence >5 and <59 HV 482 (54.77%) 226 (56.50%)
Arousal >50 and <55 LA 348 (39.55%) 195 (48.75%)
Arousal >5 and <59 HA 542 (60.45%) 205 (51.25%)

Table 1.
Labeling strategy and
distribution of labels
across training and
test set
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reference and pre-trial baseline was removed. The physiological signals were down-sampled
to 128 Hz and the pre-trial baseline was removed.

3.6 Feature extraction
Time domain and frequency domain features were used to find the electrode position for top-
30 features and it was found that frequency-based power spectrum density provided better
accuracy [22]. In contrast, another study found that power spectral density did not perform
well [23]. As emotions vary with time, Hjorth features were widely used in ER as these
features are useful in monitoring time varying EEG signals [24]. Hence, this work extracted
both time domain features –Hjorth activity, Hjorth complexity and frequency domain feature
– power spectral density (PSD) and used feature selection process to select the best
performing features [25]. Hjorth activity and Hjorth complexity features are computed for the
entire time range of the signal. A total of 280 features are computed as shown in Table 2.

Horizontal EOG, vertical EOG, zygomaticusmajor EMGand trapezius EMGare computed
by subtracting the corresponding values between two channels and is shown in Table 2.
In this work, EEG is considered as one modality, and all other signals are grouped under
physiological signals. For the feature extraction process, yðtÞ is considered as the signal and
dyðtÞ
dt

as the first derivative of the signal.
3.6.1 Hjorth activity.Hjorth activity [24] parameter is the total power of the signal. It is the

surface of the power spectrum in the frequency domain and is shown in equation (3).

Activity ¼ VarianceðyðtÞÞ (3)

3.6.2Hjorth complexity.Hjorth complexity [24] is a dimensionless parameter defined as the
ratio of mobility of the first derivative of the signal to the mobility of the signal, as shown in
equation (4). The mobility is defined as the square root of the ratio of the variance of the first
derivative of the signal to the variance of the signal, as shown in equation (5). The mobility of
the signal represents the frequency variance of the power spectrum and can be illustrated as
the standard deviation of the power spectrum along the frequency axis. The Hjorth
complexity gives an estimate of the bandwidth of the signal and indicates the shape similarity
of the signal to a pure sine wave.

Complexity ¼
Mobility

�
dyðtÞ
dt

�

MobilityðyðtÞÞ (4)

where mobility is defined as in equation (5).

Modality Channel name Features
Number of
features

EEG FP1, AF3, F3, F7, FC5, FC1,
C3, T7, CP5, CP1, P3, P7, PO3,
O1, Oz, Pz, FP2, AF4, Fz, F4,
F8, FC6, FC2, Cz, C4, T8, CP6,
CP2, P4, P8, PO4, O2

Hjorth Activity, Hjorth
Complexity, Alpha Band Welch
PSD, Beta Band Welch PSD,
Gamma Band Welch PSD, Theta
Band Welch PSD, Delta Band
Welch PSD

32 3 7 5 224

EOG EXG1 – EXG2, EXG3 – EXG4 2 3 7 5 14
EMG – Zygomaticus
Major, Trapezius

EXG5 – EXG6, EXG7 – EXG8 2 3 7 5 14

EDA GSR1 1 3 7 5 7
Respiration Resp 1 3 7 5 7
Plethysmograph Plet 1 3 7 5 7
Temperature Temp 1 3 7 5 7

Table 2.
Features for EEG

channels and
physiological channels
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Mobility ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

�
dyðtÞ
dt

�

VarianceðyðtÞÞ

vuut
(5)

3.6.3 Power spectral density. PSD refers to the spectral energy distribution of the signal
per unit time [26] and is computed separately for alpha (8 – 12 Hz), beta (12 – 30 Hz), gamma
(30 – 45 Hz), theta (4 – 8 Hz) and delta band (0 – 4 Hz) of each channel using theWelchmethod.

3.7 Feature selection
In this work, feature selection is done using best first search strategy which is a correlation-
based feature subset selection [27] where the correlation between the feature and the output
class, and the correlation among the features is computed. Feature selection is done such that
the subset of features are highly correlated with the class while intercorrelation among the
selected features is low. In this work, best first strategy is carried out with an initial empty
feature list followed by iteratively including and excluding all possible single attributes.
In best first search strategy, single features that have high correlation with the class are
added to the search space. If the added feature does not contribute to the improvement of
accuracy, then the algorithm backtracks to the last best subset in the feature space and
continues the search. In order to avoid exploring the entire feature space a stopping criterion
is used. In this work, the search procedure is terminated if there is no improvement for the last
five iterations.

The features selected for each of EEG, physiological, and combined modalities are shown
in Table 3. From the features selected, it is observed that only frequency-based PSD features
are selected for physiological signals while time based Hjorth features are selected for T7, P7,
Fz, FP1, FC6 electrodes of EEG signal. The position of T7, P7, Fz, FP1 and FC6 electrode is
associated with superior temporal gyrus, lateral occipital cortex, superior frontal gyrus,
frontal pole and precentral gyrus, respectively [28]. From the feature selection process, it is
observed that the time domain features of electrodes associated with gyrus and frontal pole

Modality Features selected

Arousal – LA, HA Valence – LV, HV
EEG GAMMA_F3_Welch_PSD,

T7_HjorthActivity,
GAMMA_CP5_Welch_PSD,
ALPHA_P3_Welch_PSD,
P7_HjorthComplexity,
Fz_HjorthComplexity,
ALPHA_FC6_Welch_PSD,
GAMMA_CP6_Welch_PSD,
GAMMA_P4_Welch_PSD

FP1_HjorthActivity,
FC6_HjorthComplexity,
ALPHA_FC2_Welch_PSD

Physiological GAMMA_hEOG_Welch_PSD,
GAMMA_zEMG_Welch_PSD

GAMMA_hEOG_Welch_PSD,
GAMMA_zEMG_Welch_PSD

EEG þ Physiological GAMMA_F3_Welch_PSD,
T7_HjorthActivity,
GAMMA_CP5_Welch_PSD,
ALPHA_P3_Welch_PSD,
P7_HjorthComplexity,
Fz_HjorthComplexity,
ALPHA_FC6_Welch_PSD,
GAMMA_CP6_Welch_PSD,
GAMMA_P4_Welch_PSD,
GAMMA_zEMG_Welch_PSD

FC6_HjorthComplexity,
GAMMA_zEMG_Welch_PSD

Table 3.
Features selected from
each of modalities
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brain regions are selected [28]. This is in accordance with literature which states that the
gyrus [29] and the frontal pole [30] have a role in emotion regulation.

3.8 Classifiers
In this work, the features from different modalities are fed to the supervisedmachine learning
algorithms, namely, Naı€ve Bayes [31], logistic regression [32], LDA [33], QDA [33], logit boost
[34], and stacking [35] and the accuracy determined is compared. These classifiers are
explained briefly in supplementary material at https://github.com/armanjupriya-er/er-
comparison-supplementary.

4. Results and discussion
The accuracy and F1-score of the experiment are shown in Table 4. The graphic illustration is
available as Figure S1 at: https://github.com/armanjupriya-er/er-comparison-supplementary.
The results obtained using EEGand physiological signals as independentmodalities indicate
that EEG signals are better at arousal prediction compared to physiological signals by 7.18%,
while physiological signals are better at valence prediction compared to EEG signals by
3.51%. Combining EEG and physiological modalities, the arousal prediction is better than
physiological signal modality by 2.39% and is inferior to EEG modality by 4.46%, while the
valence prediction of the combined modality is better than EEG modality by 3.07% and is
inferior to physiological modality by 0.42%. From the prediction accuracy in arousal and
valence dimension, it is observed that EEG as a single modality and physiological signal as a
single modality performs better than combining EEG with physiological signals.

A one-way ANOVA test was conducted in order to validate whether there is any
significant difference in prediction ability between the EEG and physiological modalities
using the same set of features. One-way ANOVA for arousal accuracy (F (1,6) 5 7.05,
p 5 0.0378) shows that there is a significant difference in accuracy levels reported by EEG
and physiological signals, while the difference in F1-Score (F (1,6) 5 5.07, p5 0.0653) is not
significant at 5% level of significance. One-way ANOVA for valence accuracy (F (1,6)5 0.08,
p 5 0.7874) and F1-score (F (1,6) 5 0.25, p 5 0.6372) shows that there is no significant
difference in accuracy and F1-score between EEG and physiological modalities at 5% level of
significance.

Feature selection shows that EEG electrodes F3, T7, CP5, P3, P7, Fz, FC6, CP6, P4 are used
in arousal prediction, while signals from FP1 and FC6 are used in valence prediction. Based

Modality Classifier
Arousal – LA, HA Valence – LV, HV

Accuracy (%) F1 score Accuracy (%) F1 score

EEG Logit Boost 53.75 0.536 55.00 0.504
Naı€ve Bayes 51.75 0.468 56.75 0.513
QDA 51.75 0.470 57.00 0.524
Stacking 56.00 0.560 56.75 0.538

Physiological Logit Boost 49.50 0.415 59.00 0.592
Naı€ve Bayes 49.00 0.395 55.00 0.405
QDA 48.75 0.394 55.00 0.401
Stacking 52.25 0.508 57.75 0.576

EEG þ Physiological Logit Boost 46.75 0.451 58.75 0.588
Naı€ve Bayes 49.50 0.446 56.50 0.566
QDA 50.25 0.464 55.25 0.402
Stacking 53.50 0.534 56.50 0.566

Table 4.
Accuracy and F1-score
for EEG, physiological

and
EEG þ physiological

modality

Emotion
recognition –

EEG and
physiological
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on the observation, FC6 electrode is common for arousal and valence prediction; therefore
prediction ability of the FC6 electrode is studied and shown in Table 5. The experimental
results suggest that the ability of the FC6 electrode to predict the valence is 59.00%, which is
equal to the best prediction accuracy, obtained using all of the physiological signals. The
prediction accuracy of the FC6 electrode with respect to arousal is 52.25%, which is at par
with the prediction accuracy of the physiological signals. The FC6 electrode position
corresponds to the primary motor cortex area in the brain, which is associated with the
function of controlling different muscle groups [36]. This concludes that the prediction
accuracy of the FC6 electrode in the valence dimension comes from muscle activity.

On further analysis of the selected features list, it is observed that zEMG plays a
significant role in the prediction of both arousal and valence. Classifiers were trained on the
physiological signals: EOG, EMG, EDA, temperature, plethysmograph and respiration using
the features listed inTable 2 to study their prediction ability. To sort the physiological signals
based on the prediction accuracy, same set of features are fed to the classifiers listed earlier.
The best prediction accuracy obtained and the corresponding classifier for each of the
physiological signals is shown inTable 5. The graphic illustration is available as Figure S2 at:
https://github.com/armanjupriya-er/er-comparison-supplementary.

Study of the prediction capability of time and frequency domain features of EOG, EMG,
EDA, temperature, plethysmograph and respiration indicates that the plethysmograph
shows an arousal prediction accuracy of 55.50%, which is inferior to the EEG modality by
0.89%, while the EOG shows valence prediction accuracy of 60.00%, which is better than the
combination of all physiological signals by 1.69%. Features of EDA and zEMG each resulted
in valence prediction accuracy of 58.25%. The sorted order of physiological signals based on
arousal prediction accuracy is as follows: plethysmograph, EOG (hEOG þ vEOG), vEOG,
hEOG, zEMG, tEMG, temperature, EMG (tEMGþ zEMG), respiration, EDA, whereas based
on valence prediction accuracy the sorted order is EOG (hEOGþ vEOG), EDA, zEMG, hEOG,
respiration, tEMG, vEOG, EMG (tEMGþ zEMG), temperature, plethysmograph. The valence
prediction accuracy of EOG is superior to zEMG and EDA by 1.75% at the cost of higher
number of electrodes (EOG requires four electrodes, whereas zEMG and GSR each require
two electrodes). The results indicate that the valence prediction accuracy comes from muscle
activity. Another notable observation is that, in a high dimensional feature space, ensemble
classifiers (logit boost, stacking) perform better (Table 4), and in a low dimensional feature
space, statistical models (logistic regression, LDA, QDA) perform better (Table 5) which is in
line with literature [37].

The results of the experiment in comparison with the state-of-the-art (SOTA) is presented
as supplementary Table S1 at https://github.com/armanjupriya-er/er-comparison-

Modality
Arousal Valence

Model Accuracy F1-score Model Accuracy F1score

EMG (tEMG þ zEMG) Logistic 52.00 0.414 Logistic 56.75 0.502
EOG (hEOG þ vEOG) Naı€ve Bayes 53.75 0.513 LDA 60.00 0.601
EDA Logit Boost 51.25 0.427 Logistic 58.25 0.446
hEOG QDA 53.00 0.460 Logit Boost 57.25 0.573
Plethysmograph LDA 55.50 0.460 Logistic 55.00 0.417
Respiration Logit Boost 51.75 0.454 LDA 57.25 0.469
tEMG Naı€ve Bayes 52.50 0.397 Logit Boost 57.25 0.537
Temperature Logit Boost 52.25 0.385 LDA 56.75 0.426
vEOG QDA 53.75 0.528 Logistic 57.25 0.536
zEMG Logistic 52.50 0.404 Logistic 58.25 0.522
FC6 EEG Electrode Stacking 52.25 0.475 QDA 59.00 0.500

Table 5.
Prediction accuracy of
physiological signals
and FC6 EEG electrode
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supplementary. It is observed that only 36.4% of the studies [10, 12, 19, 38] in literature have
used subject independent ER; while all other studies in literature are on subject specific ER.
All the subject independent studies have used LOSO validation, and the reported results are
average of the LOSO results across the subjects. The current experiment is subject
independent, and it varies from all the previous studies as it splits the subjects into 70:30 ratio
for training and testing respectively. The results reported in Tables 4, 5, 6 and S1 are from the
test set.

The performance of regularized deep fusion of kernel machines (RDFKMs) on EEG, EMG,
EDA and respiratory rate [38] and pretrained inception ResNet v2 on facial expression, EEG
and GSR modalities [12] were explored in recent literature. Similarly, recent research
investigated the performance of statistical features on combination ofmultiple modalities [10,
19]. Unlike the experiment carried out in this work, all the above-mentioned recent research
reported the average LOSO validation score as the final accuracy. Also, some of the recent
works did not publish the cut-off score used to distinguish low and high values in the arousal
and valence dimensions [10, 38] whereas, two other recent works mentioned the cut-off score
as 4.5 [19] and cut-off score range as [1.0,3.0] (for low) and [7.0, 9.0] (for high) [12]. This is in
contrast to the experiment carried out in this work which uses scale ranges of [0, 5.0] and (5.0,
9.0] as low and high, respectively.

The accuracy obtained by proposed unimodal valence recognition using EOG and
multimodal valence recognition using zEMG and EOG is better than the accuracy obtained in
literature [10, 12] by 5.44% and 11.52% respectively, but less than the accuracy obtained in
literature [19, 38] by 16.87% and 6.97%, respectively. The accuracy obtained by proposed
unimodal arousal recognition using EEG or plethysmograph is better than the accuracy
obtained in Ref. [12] by 4.08% and is less compared to all other methods. This research work is
not compared with the subject dependent ER studies listed in Table S1, as this experiment is
about subject independent ER. The low accuracy reported in this experiment can be partly
attributed to the dataset used to report the test accuracy. This experiment specifically uses a
separate test set while all other subject independent ER work [10, 12, 19, 38] listed in Table S1

Metric
Proposed
Unimodal-1

Proposed
Unimodal-2

Proposed
Multimodal-1

Proposed
Unimodal-3

Proposed
Unimodal-4

Proposed
Unimodal-5

Modality EEG Plethysmograph zEMG, EOG EOG EDA zEMG
Class Labels LA, HA LA, HA LV, HV LV, HV LV, HV LV, HV
Method Stacking LDA Logit Boost LDA Logistic Logistic
Accuracy (%) 56.00 55.50 59.00 60.00 58.25 58.25
Precision 0.561 0.644 0.596 0.614 0.760 0.575
Recall 0.560 0.555 0.590 0.600 0.583 0.583
F1-Score 0.560 0.460 0.592 0.601 0.446 0.522
Kappa
Statistic

0.121 0.091 0.177 0.207 0.045 0.081

ROC Area 0.554 0.582 0.608 0.638 0.586 0.546
TPR 0.560 0.555 0.590 0.600 0.583 0.583
FPR 0.439 0.466 0.411 0.387 0.542 0.508
TP Count
(0 as 0)

114 25 102 114 7 33

TN Count
(1 as 1)

110 197 134 126 226 200

FN Count
(0 as 1)

81 170 72 60 167 141

FP Count
(1 as 0)

95 8 92 100 0 26
Table 6.

Evaluation metrics for
the proposed models
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reports an average of LOSO accuracy. Also, in this experiment, the same set of features is used
across different modalities. More research is needed to determine whether modality specific
features improve the prediction accuracy. Table 6 shows additional evaluation metrics for the
proposed methods, including accuracy, ROC area, kappa statistic, precision, recall, true
positive rate (TPR), false positive rate (FPR), F1-score, true positive count (TP count), false
positive count (FN count), true negative count (TN count) and false negative count (FN count).
According to the kappa statistic, F1-score and accuracy, EEG is better suited for arousal
prediction, whereas EOG is better suited for valence prediction. The ROC area reported for
arousal prediction by EEGmodality is less compared to the plethysmographmodality by 0.028.
From an ergonomic perspective, obtaining a plethysmograph signal is easier compared to
obtaining EEG signals.

5. Conclusion
The experimental results of this work suggest that arousal dimension prediction ability is
high for EEG signals, while valence dimension prediction ability is high for the combination
of EOG and zEMG signals. In addition, valence can be measured from the eyes (EOG) while
arousal can be measured from the changes in blood volume (plethysmograph). Also, muscle
activity plays a significant role in valence prediction.

Further research is required to examinewhether the prediction ability of the EEG signal is
resulting from brain regions associated with muscle activity or not. Whether modality
specific features improve the prediction accuracy or not is yet to be explored. The experiment
needs to be repeated on other existing or new datasets to identify the best modality for each
emotion dimension. To determine the effect of stimulus on eye muscle, further study of eye
movements while expressing emotions can be performed.

References

1. Darwin C. The expression of the emotions in man and animals. Chicago: The University of
Chicago Press; 1965.

2. Lange CG, James W (Eds). The emotions. Williams & Wilkins Co; 1922. 1.

3. Cannon WB. The James–Lange theory of emotions: a critical examination and an alternative
theory. The Am J Psychol. 1927; 39: 106-24.

4. Wang Z, Zhou X, Wang W, Liang C. Emotion recognition using multimodal deep learning in
multiple psychophysiological signals and video. Int J Machine Learn Cybernetics. 2020; 11: 923-34.
doi: 10.1007/s13042-019-01056-8.

5. Huang H, Hu Z, Wang W, Wu M. Multimodal emotion recognition based on ensemble
convolutional neural network. IEEE Access. 2020; 8: 3265-71. doi: 10.1109/access.2019.2962085.

6. Hassan MM, Alam MGR, Uddin MZ, Huda S, Almogren A, Fortino G. Human emotion recognition
using deep belief network architecture. Inf Fusion. 2019; 51: 10-18. doi: 10.1016/j.inffus.2018.
10.009.

7. Zhu J, Wei Y, Feng Y, Zhao X, Gao Y. Physiological signals-based emotion recognition via high-
order correlation learning. ACM Trans Multimedia Comput Commun Appl. 2020; 15: 1-18. doi: 10.
1145/3332374.

8. Poria S, Peng H, Hussain A, Howard N, Cambria E. Ensemble application of convolutional neural
networks and multiple kernel learning for multimodal sentiment analysis. Neurocomputing. 2017;
261: 217-30. doi: 10.1016/j.neucom.2016.09.117.

9. Yin Z, Zhao M, Wang Y, Yang J, Zhang J. Recognition of emotions using multimodal physiological
signals and an ensemble deep learning model. Computer Methods Programs Biomed. 2017; 140:
93-110. doi: 10.1016/j.cmpb.2016.12.005.

ACI

https://doi.org/10.1007/s13042-019-01056-8
https://doi.org/10.1109/access.2019.2962085
https://doi.org/10.1016/j.inffus.2018.10.009
https://doi.org/10.1016/j.inffus.2018.10.009
https://doi.org/10.1145/3332374
https://doi.org/10.1145/3332374
https://doi.org/10.1016/j.neucom.2016.09.117
https://doi.org/10.1016/j.cmpb.2016.12.005


10. Bota P, Wang C, Fred A, Silva H. Emotion assessment using feature fusion and decision fusion
classification based on physiological data: are we there yet?. Sensors (Switzerland). 2020; 20: 4723.
doi: 10.3390/s20174723.

11. Dzie_zyc M, Gjoreski M, Kazienko P, Saganowski S, Gams M. Can we ditch feature engineering?
End-to end deep learning for affect recognition from physiological sensor data. Sensors
(Switzerland). 2020; 20: 1-21. doi: 10.3390/s20226535.

12. Cimtay Y, Ekmekcioglu E, Caglar-Ozhan S. Cross-subject multimodal emotion recognition based
on hybrid fusion. IEEE Access. 2020; 8: 168865-78. doi: 10.1109/access.2020.3023871.

13. Tan C, Ceballos G, Kasabov N, Subramaniyam NP. FusionSense: emotion classification using
feature fusion of multimodal data and deep learning in a brain-inspired spiking neural network.
Sensors (Switzerland). 2020; 20: 5328. doi: 10.3390/s20185328.

14. Fu J, Mao Q, Tu J, Zhan Y. Multimodal shared features learning for emotion recognition by
enhanced sparse local discriminative canonical correlation analysis. Multimedia Syst. 2017; 25:
451-61. doi: 10.1007/s00530-017-0547-8.

15. Li W, Chu M, Qiao J. Design of a hierarchy modular neural network and its application in
multimodal emotion recognition. Soft Comput. 2019; 23: 11817-28. doi: 10.1007/s00500-018-03735-0.

16. Wang Z, Zhou X, Wang W, Liang C. Emotion recognition using multimodal deep learning in
multiple psychophysiological signals and video. Int J Machine Learn Cybernetics. 2020; 11: 923-34.
doi: 10.1007/s13042-019-01056-8.

17. Kaya H, G€urpınar F, Salah AA. Video-based emotion recognition in the wild using deep transfer
learning and score fusion. Image Vis Comput. 2017; 65: 66-75. doi: 10.1016/j.imavis.2017.01.012.

18. Tzirakis P, Chen J, Zafeiriou S, Schuller B. End-to-end multimodal affect recognition in real-world
environments. Inf Fusion. 2021; 68: 46-53. doi: 10.1016/jinffus.2020.10.011.

19. Ayata D, Yaslan Y, Kamasak ME. Emotion recognition from multimodal physiological signals for
emotion aware healthcare systems. J Med Biol Eng. 2020; 40: 149-57. doi: 10.1007/s40846-019-00505-7.

20. Frank E, Hall MA, Witten IH. The WEKA workbench. Online appendix for data mining: practical
machine learning tools and techniques. 4th ed. Morgan Kaufmann; 2016.

21. Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I,
DEAP . A database for emotion analysis using physiological signals. IEEE Trans Affective
Comput. 2012; 3: 18-31. doi: 10.1109/t-affc.2011.15.

22. Wang XW, Nie D, Lu BL. EEG-based emotion recognition using frequency domain features and
support vector machines. In: Lu BL, Zhang L, Kwok J (Eds.). Neural information processing.
ICONIP 2011. Lecture notes in computer science, Vol. 7062. Berlin, Heidelberg: Springer; 2011.
doi: 10.1007/978-3-642-24955-6_87.

23. Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE
Trans Affective Comput. 2014; 5(3): 327-39. doi: 10.1109/TAFFC.2014.2339834.

24. Hjorth B. The physical significance of time domain descriptors in EEG analysis.
Electroencephalography Clin Neurophysiol. 1973; 34(3): 321-5. ISSN 0013-4694 doi: 10.1016/
0013-4694(73)90260-5.

25. Hjorth B. EEG analysis based on time domain properties. Electroencephalography Clin
Neurophysiol. 1970; 29(3): 306-10. doi: 10.1016/0013-4694(70)90143-4.

26. Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on
time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics. 1967;
15(2): 70-3. doi: 10.1109/TAU.1967.1161901.

27. Hall MA. Correlation-based feature subset selection for machine learning. Hamilton, New Zealand:
University of Waikato; 1998.

28. Scrivener CL, Reader AT. Variability of EEG electrode positions and their underlying brain
regions: visualizing gel artifacts from a simultaneous EEG-fMRI dataset. Brain Behav. 2022; 12(2):
e2476. doi: 10.1002/brb3.2476.

Emotion
recognition –

EEG and
physiological

https://doi.org/10.3390/s20174723
https://doi.org/10.3390/s20226535
https://doi.org/10.1109/access.2020.3023871
https://doi.org/10.3390/s20185328
https://doi.org/10.1007/s00530-017-0547-8
https://doi.org/10.1007/s00500-018-03735-0
https://doi.org/10.1007/s13042-019-01056-8
https://doi.org/10.1016/j.imavis.2017.01.012
https://doi.org/10.1016/jinffus.2020.10.011
https://doi.org/10.1007/s40846-019-00505-7
https://doi.org/10.1109/t-affc.2011.15
https://doi.org/10.1007/978-3-642-24955-6_87
https://doi.org/10.1109/TAFFC.2014.2339834
https://doi.org/10.1016/0013-4694(73)90260-5
https://doi.org/10.1016/0013-4694(73)90260-5
https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1002/brb3.2476


29. Portugal LCL, Alves RDCS, Orlando FJ, Sanchez TA, Mocaiber I, Volchan E, Smith Erthal F,
Antunes David I, Kim J, Oliveira L, Padmala S, Chen G, Pessoa L, Garcia Pereira M. Interactions
between emotion and action in the brain. NeuroImage. 2020; 214: 116728. ISSN 1053 - 8119 doi: 10.
1016/j.neuroimage.2020.116728.

30. Koch SBJ, Mars RB, Toni I, Roelofs K. Emotional control, reappraised. Neurosci Biobehavioral
Rev. 2018; 95: 528-34. ISSN 0149-7634 doi: 10.1016/j.neubiorev.2018.11.003.

31. John GH. Pat langley: estimating continuous distributions in bayesian classifiers. In: Eleventh
Conference on Uncertainty in Artificial Intelligence, San Mateo; 1995. p. 338-45.

32. le Cessie S, van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992; 41(1):
191-201.

33. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning : with
applications in R. New York: Springer; 2013.

34. Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. The
Annals of Statistics. 2000; 28: 337-407. doi: 10.1214/aos/1016218223.

35. Wolpert D. Stacked generalization. Neural Networks. 1992; 5: 241-59. doi: 10.1016/S0893-6080(05)
80023-1.

36. Rimbert S, Al-Chwa R, Zaepffel M, Bougrain L. Electroencephalographic modulations during an
open- or closed-eyes motor task. Peer J. 2018; 6: e4492. doi: 10.7717/peerj.4492.

37. Pappu V, Pardalos PM. High-dimensional data classification. In: Aleskerov F, Goldengorin B,
Pardalos P, (Eds.). Clusters, orders, and trees: methods and applications. Springer optimization
and its applications, Vol. 92. New York, NY: Springer; 2014. doi: 10.1007/978-1-4939-0742-7_8.

38. Zhang X, et al. Emotion recognition from multimodal physiological signals using a regularized
deep fusion of kernel machine. IEEE Trans Cybernetics. 2021; 51(9): 4386-99. doi: 10.1109/TCYB.
2020.2987575.

Further reading

39. Huang Y, Yang J, Liu S, Pan J. Combining facial expressions and electroencephalography to
enhance emotion recognition. Future Internet. 2019; 11: 1-17. doi: 10.3390/fi11050105.

40. Kwon YH, Shin SB, Kim SD. Electroencephalography based fusion two-dimensional (2d)-
convolution neural networks (CNN) model for emotion recognition system. Sensors (Switzerland).
2018; 18: 1383. doi: 10.3390/s18051383.

41. Karanchery S, Palaniswamy S. Emotion recognition using one-shot learning for human-computer
interactions. In: 2021 International Conference on Communication, Control and Information
Sciences (ICCISc); 2021. p. 1-8. doi: 10.1109/ICCISc52257.2021.9485024.

42. Kuruvayil S, Palaniswamy S. Emotion recognition from facial images with simultaneous
occlusion, pose and illumination variations using meta-learning. J King Saud Univ - Computer Inf
Sci. 2021. ISSN 1319-1578. doi: 10.1016/j.jksuci.2021.06.012 (In press).

43. Sasidharakurup H, Nutakki C, Rajendran A, Venugopal P, Sumon M, Navaneethkumar L, Madhu
H, Bipin GN, Shyam D. Spectral correlations in speaker-listener behavior during a focused duo
conversation using EEG. In: Proceedings of the Seventh International Conference on Advances in
Computing, Communications and Informatics (ICACCI-2018), Bangalore, Karnataka, India, Sept
19-22, 2018.

44. Bodda S, Maya S, Potti M, Naryanan E, Sohan U, Bhuvaneshwari Y, Mathiyoth R, Diwakar S.
Computational analysis of EEG activity during stance and swing gait phases. In: Proceedings of
the Third International Conference on Computing and Network Communications (CoCoNet’19)
(accepted), Trivandrum, Kerala, India, 2019.

45. Keshari T, Palaniswamy S. Emotion recognition using feature-level fusion of facial expressions
and body gestures. In: 2019 4th International Conference on Communication and Electronics
Systems (ICCES 2019), Coimbatore, TamilNadu, India; 2019. p. 1184-9.

ACI

https://doi.org/10.1016/j.neuroimage.2020.116728
https://doi.org/10.1016/j.neuroimage.2020.116728
https://doi.org/10.1016/j.neubiorev.2018.11.003
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.7717/peerj.4492
https://doi.org/10.1007/978-1-4939-0742-7_8
https://doi.org/10.1109/TCYB.2020.2987575
https://doi.org/10.1109/TCYB.2020.2987575
https://doi.org/10.3390/fi11050105
https://doi.org/10.3390/s18051383
https://doi.org/10.1109/ICCISc52257.2021.9485024
https://doi.org/10.1016/j.jksuci.2021.06.012


46. Lawrance D, Palaniswamy S. Emotion recognition from facial expressions for 3D videos using
siamese network. In: 2021 International Conference on Communication, Control and Information
Sciences (ICCISc); 2021. p. 1-6. doi: 10.1109/ICCISc52257.2021.9484949.

Corresponding author
Suja Palaniswamy can be contacted at: p_suja@blr.amrita.edu

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Emotion
recognition –

EEG and
physiological

https://doi.org/10.1109/ICCISc52257.2021.9484949
mailto:p_suja@blr.amrita.edu

	Subject independent emotion recognition using EEG and physiological signals – a comparative study
	Introduction
	Related works
	Materials and methods
	DEAP dataset description
	Evaluation measures
	Accuracy
	F1-score
	ROC area
	Cohen’s kappa

	Training and test dataset split
	Labeling strategy
	Pre-processing
	Feature extraction
	Hjorth activity
	Hjorth complexity
	Power spectral density

	Feature selection
	Classifiers

	Results and discussion
	Conclusion
	References
	Further reading


