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Abstract

Purpose – The practical purpose of this research is to propose a candidate for post-quantum signature
standard that is free of significant drawback of the finalists of the NIST world competition, which consists in
the large size of the signature and the public key. The practical purpose is to propose a fundamentally new
method for development of algebraic digital signature algorithms.
Design/methodology/approach – The proposed method is distinguished by the use of two different finite
commutative associative algebras as a single algebraic support of the digital signature scheme and setting two
different verification equation for a single signature. A single public key is computed as the first and the second
public keys, elements of which are computed exponentiating two different generators of cyclic groups in each of
the algebras.
Findings –Additionally, a scalar multiplication by a private integer is performed as final step of calculation of
every element of the public key. The same powers and the same scalar values are used to compute the first and
the second public keys by the same mathematic formulas. Due to such design, the said generators are kept in
secret, providing resistance to quantum attacks. Two new finite commutative associative algebras,
multiplicative group of which possesses four-dimensional cyclicity, have been proposed as a suitable
algebraic support.
Originality/value – The introduced method is novel and includes new techniques for designing algebraic
signature schemes that resist quantum attacks. On its base, a new practical post-quantum signature scheme
with relatively small size of signature and public key is developed.

Keywords Information protection, Computer security, Digital signature, Post-quantum cryptography,

Finite associative algebra, Commutative algebra, Multi-dimensional cyclicity groups

Paper type Research paper

1. Introduction
Public-key сryptographic algorithms and protocols are of great importance in modern
practical informatics and computer science. They provide basic primitives for solving
fundamental problems of information security and are a source of new information
technologies. In the last three decades, most developed countries have used cryptographic
standards for public key distribution and digital signature, based on the computational
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complexity of the discrete logarithm problem (DLP) and the factorization problem (FP).
However, both of these problems can be effectively solved on a quantum computer [1–3], the
appearance of which is predicted in the fairly near future.

The implementation of this expectation will mean that the specified cryptographic
standards cease to be secure. Therefore, the development of practical public-key post-
quantum cryptoschemes that resist quantum attacks (attacks with using quantum and
ordinary computers) attracts much attention of the cryptographic community [4]. A notable
event was NIST’s announcement of a worldwide competition to develop candidates for post-
quantum public-key standards for (1) digital signature algorithms and (2) public-key
encryption and key-establishment algorithms during 2017–2024 [5].

At the moment, 3 signature schemes and 4 public-key encryption and key-establishment
algorithms have been selected as finalists out of 69 initially submitted candidates for post-
quantum public-key standards [6]. However, the former have a significant drawback for a
wide practical application, which consists in the large size of the signature and the public key.

The article is organized as follows. In Section 2, different approaches to design of post-
quantum public key cryptoschemes are mentioned. Section 3 describes the overall idea of the
proposed method for development of the post-quantum signature algorithm. Section 4
presents a new algebraic post-quantum signature scheme. Next Section 5 provides
preliminary security estimation. Section 6 concludes the paper.

2. Preliminaries
For the development of post-quantum public-key cryptographic algorithms and protocols
one should use computationally difficult problems that are different from the FP and
DLP, since polynomial algorithms for solving FP andDLP on a quantum computer are known
[1–3]. Considerable attention of the developers is paid to the development of cryptoschemes
on algebras [6, 7], on Boolean functions [8], on lattices [9] and on linear codes [10, 11].

One of attractive approaches to the development of post-quantum signature algorithm
relates to exploiting computational difficulty of the so-called hidden discrete logarithm
problem (HDLP) defined usually in non-commutative finite associative algebras (FAAs).
Different forms of the HDLP were used to develop signature algorithms on non-commutative
FAAs [7, 12, 13]. For the first time, a HDLP-based signature algorithm on a commutative FAA
was proposed in [14].

A common feature of the HDLP-based signature algorithms is the use of exponentiation
operations in a hidden cyclic group, but the masking mechanisms used to hide this group are
fundamentally different when using non-commutative and commutative algebras. More
extensive possibilities for setting various forms of the HDLP in non-commutative FAAs
are associated with the possibility of setting automorphisms and homomorphisms in
non-commutative algebras, which can be used as masking operations. The latter is not
possible when using commutative FAAs and othermaskingmechanisms should be proposed
when developing a HDLP-based signature algorithm on commutative algebras.

In this paper, we consider a method for designing post-quantum signature schemes on
commutative FAAs characterized in exploiting a novel masking mechanism to hide cyclic
groups in which the base exponentiation operations are performed. The main requirement to
the FAAs suitable for their using as algebraic support for implementing the introduced
method is that their multiplicative group possesses multidimensional cyclicity.

Consider the setting of FAAs. Suppose in a finitem-dimensional vector space over a finite
field (ground field GF(p) or extension of the binary field GF(2n)), in which a vector
multiplication operation is defined additionally to the scalar multiplication and addition
operations. If the vector multiplication is distributive at the left and at the right relatively the
addition operation, then the said vector space is calledm-dimensional algebra. A vectorA is
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presented as an ordered set of its coordinates: A ¼ ða0; a1; . . . ; am−1Þ or as a sum of its
components:A ¼ a0e0 þ a1e1 þ � � � þ am−1em−1, where eiði ¼ 0; 1; . . . ; m− 1Þare formal
basis vectors.

Usually, themultiplication of two vectorsA ¼ Pm−1
i¼0 aiei andB ¼ Pm−1

j¼0 bjej is defined by

the following formula:

AB ¼
Xm−1

i;j¼0

aibjeiej; (1)

where the coordinates ai and bi aremultiplied as elements of the finite field, for exampleGF(p),
and every of the products eiej is to be substituted by an one-component vector λek indicated in
a cell in the intersection of the ith row and jth column of so called basis vector multiplication
table (BVMT), for example, see Table 1. The value λ ∈ GF(p) is called structural coefficient.

The use of the exponentiation operation in the procedures of public key computation and
of signature generation and verification implies the possibility of using a fast exponentiation
algorithm. To ensure the correct operation of the latter, the associativity condition of the
multiplication operation must be met. Formula (1) shows that one can define the associative
vector multiplication operation imposing the following conditions on the BVMT:

ðeiejÞek ¼ eiðejekÞ (2)

for all possible triples of basis vectors ðei; ej; ekÞ.
To construct an algebra suitable for our purpose, we used a unified method [15] for

defining algebras of arbitrary even dimensions, which results in non-commutative/
commutative FAAs of the dimensions m ≥ 6/m 5 2, 4. From a single general formula
introduced in [15] for case m 5 4 we get the following formula for generating a BVMT:

eiej ¼
8<
:

eiþjmod4; if imod2 ¼ 0;
ei−jmod4; if imod2 ¼ 1; jmod2 ¼ 0;
λei−jmod4; if imod2 ¼ 1; jmod2 ¼ 1:

(3)

that defines Table 1a. To construct the second four-dimensional commutative FAA, we
propose the following formula:

eiej ¼
8<
:

λeiþj−2mod4; if imod2 ¼ 0; jmod2 ¼ 0;
eiþj−2mod4; if imod2 ¼ 0; jmod2 ¼ 1;
ei−jþ2mod4; if imod2 ¼ 1:

(4)

that defines Table 1b. It is easy to show the latter formula (3) sets the satisfiability of condition
(2). The validity of the following two statements can be easily verified:

e0 e1 e2 e3 e0 e1 e2 e3 

e0 
e0 e1 e2 e3 e0 

e2 e3 e0 e1 

e1 
e1 e0 e3 e2 e1 

e3 e2 e1 e0  

e2 
e2 e3 e0 e1 e2 

e0 e1 e2 e3 

e3 
e3 e2  e1 e0 e3 

e1 e0 e3  e2  

•

λ

λ

λ

λ

•

λ

λ

λ

λ

(a) (b)

Table 1.
Defining associative
vector multiplication

operation in the first (a)
and second (b) FAAs

used as algebraic
support (λ ≠ 0)
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Proposition 1. ThevectorE5 (1,0,0,0) is the unit of the commutative FAAset byTable 1a.

Proposition 2. ThevectorE5 (0,0,1,0) is the unit of the commutative FAAset byTable 1b.

Each of the defined commutative FAA contains a multiplicative group possessing
μ-dimensional cyclicity with μ 5 2, if λ is a quadratic non-residue modulo p, or μ 5 4, if λ
is a quadratic residue. Notion of the multidimensional cyclicity was introduced in [16],
namely, a finite commutative group the minimum generator system (group basis) of which
includes μgroup elements of the same order is called a μ-dimensional cyclicity group (a group
possessing μ-dimensional cyclicity).

To find the value of the order Ω of multiplicative group one is to calculate the number of
invertible elements in a FAA, which is equal to Ω. Consider the first FAA. For an invertible
vector A vector the vector equation AX 5 E has a unique solution that is inverses of the
vector A and is denoted as A�1. To obtain invertibility condition one can reduce the said
vector equation to the following system of four linear equations with the unknown integers
x0, x1, x2, and x3 as the coordinates of the vector X:8>><

>>:
a0x0 þ λa1x1 þ a2x2 þ λa3x3 ¼ 1;
a0x1 þ a1x0 þ a2x3 þ a3x2 ¼ 0;
a0x2 þ λa1x3 þ a2x0 þ λa3x1 ¼ 0;
a0x3 þ a1x2 þ a2x1 þ a3x0 ¼ 0:

(5)

The main determinant of the system (5) is

Δ ¼

���������

a0 λa1 a2 λa3

a1 a0 a3 a2

a2 λa3 a0 λa1

a3 a2 a1 a0

���������
¼ a0

�������
a0 a3 a2

λa3 a0 λa1

a2 a1 a0

�������� λa1

�������
a1 a3 a2

a2 a0 λa1

a3 a1 a0

�������

þ a2

�������
a1 a0 a2

a2 λa3 λa1

a3 a2 a0

�������� λa3

�������
a1 a0 a3

a2 λa3 a0

a3 a2 a1

�������
¼ a0

�
a0
�
a20 � λa21

�� a3ðλa0a3 � λa1a2Þ þ a2ðλa1a3 � a0a2ÞÞ�
� λa1

�
a1ða20 � λa21

�� a3ða0a2 � λa1a3Þ þ a2ða1a2 � a0a3ÞÞþ
þ a2

�
a1ðλa0a3 � λa1a2Þ � a0ða0a2 � λa1a3Þ þ a2

�
a22 � λa23

���
� λa3

�
a1ðλa1a3 � a0a2Þ � a0ða1a2 � a0a3Þ þ a3

�
a22 � λa23

�� ¼ . . . ¼
¼ �

a20 þ λa21
�2 � 4λa20a

2
1 þ

�
a22 þ λa23

�2 � 4λa22a
2
3�

� 2
�
a20 þ λa21

��
a22 þ λa23

�þ 8λa0a1a2a3 ¼ . . . ¼
¼ �

a20 þ λa21 � a22 � λa23
�2 � 4λða0a1 � a2a3Þ2:

If Δ ≠ 0, then the system (5) has unique solution and we have the following invertibility
condition: �

a20 þ λa21 � a22 � λa23
�2 � 4λða0a1 � a2a3Þ2 ≠ 0 (6)

First, we will calculate the number η of non-invertible vectors and the compute the
multiplicative group order as Ω5 p4 � η. Taking into account the condition (6) we get the
following non-invertibility condition
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�
a20 þ λa21 � a22 � λa23

�2 ¼ 4λða0a1 � a2a3Þ2: (7)

Proposition 3. If the structural constant λ is equal to a quadratic non-residue modulo p,
then the number of non-invertible vectors in the commutative FAA set by
Table 1a equals to η5 2p2� 1 and themultiplicative group order equals to
U 5 (p2 � 1)2.

Proof. Formula (7) sets the following condition:(
a20 þ λa21 � a22 � λa23 ¼ 0;

a0a1 � a2a3 ¼ 0:

For the case a1 ≠ 0, substituting the value a0 ¼ a2a3a
−1
1 in the first equality we have

a22ða23 − a21Þ ¼ λa21ða23 − a21Þ: from the latter formula one can see that in this case we
have 2p2 � 2p non-invertible vectors.

For the case a1 5 0 we have a2a3 5 0. If a2 5 0, then a20 ¼ λa230a0 ¼ a3 ¼ 0 (this gives

onemore non-invertible vector, namely, the vector (0,0,0,0). If a35 0, then a20 ¼ a220a0 ¼ ±a2
and we have 2(p� 1) additional non-invertible vectors. If a35 0 and a25 0, then a05 0. The
latter gives the vector (0,0,0,0).

In sum, for the considered cases one gets η5 2p2� 2pþ 2(p� 1)þ 15 2p2� 1. Therefore,
Ω5 p4 � η5 (p2 � 1)2. Proposition 3 is proven.

Proposition 4. If the structural constant λ is equal to a quadratic non-residue modulo p,
then the number of non-invertible vectors in the commutative FAA set by
Table 1a equals to η5 4p3 � 6p2 þ 4p2 � 1 and the multiplicative group
order equals to Ω5 (p � 1)4.

Proof. Since the structural constant λ is a quadratic residue, formula (7) defines the
following two cases:

(1)
a20 þ λa21 − a22 − λa23 ¼ 2

ffiffiffi
λ

p
ða0a1 − a2a3Þ0ða0 −

ffiffiffi
λ

p
a1Þ2 ¼ ða2 −

ffiffiffi
λ

p
a3Þ20

0a0 −
ffiffiffi
λ

p
a1 ¼ ±ða2 −

ffiffiffi
λ

p
a3Þ;

(2)
a20 þ λa21 − a22 − λa23 ¼ −2

ffiffiffi
λ

p
ða0a1 − a2a3Þ0ða0 þ

ffiffiffi
λ

p
a1Þ2 ¼ ða2 þ

ffiffiffi
λ

p
a3Þ20

0a0 þ
ffiffiffi
λ

p
a1 ¼ ±ða2 þ

ffiffiffi
λ

p
a3Þ:

These cases define four conditions for the values of coordinates (a0, a1, a2, a3) of non-invertible
vectors, which are presented in Table 2 together with the number of vectors coordinates of
which relates to a fixed condition.

Totally, number of non-invertible vectors is equal to

η ¼ p2 þ p2 þ 2pðp� 1Þ2 þ 2pðp� 1Þ2 ¼ 4p3 � 6p2 þ 4p� 1:

Condition # of different combinations of coordinates (a0, a1, a2, a3)

a0 −
ffiffiffi
λ

p
a1 ¼ a2 −

ffiffiffi
λ

p
a3 ¼ 0 p2 including (0, 0, 0, 0)

a0 þ
ffiffiffi
λ

p
a1 ¼ a2 þ

ffiffiffi
λ

p
a3 ¼ 0 p2 including (0, 0, 0, 0)

a0 −
ffiffiffi
λ

p
a1 ¼ ±ða2 −

ffiffiffi
λ

p
a3Þ≠ 0 2p (p � 1)2

a0 þ
ffiffiffi
λ

p
a1 ¼ ±ða2 þ

ffiffiffi
λ

p
a3Þ≠ 0 2p (p � 1)2

Table 2.
Number of non-

invertible vectors
relating to every of four

conditions
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Therefore, one gets Ω5 p4 � η 5 (p � 1)4. Proposition 4 is proven.
In a similar way, we can prove that the Propositions 3 and 4 are also valid for the case of

the second commutative FAA, in which the vector multiplication operation is defined by
Table 1b.

It is easy to see that the multiplicative group of each of the algebras is generated by a
group basis containing two (four) vectors of orderω5 p2� 1 (ω5 p� 1), if the value of λ is a
quadratic non-residue (residue) modulo p. When developing a digital signature scheme it is
assumed that the structural constant is equal to a residue and each of the considered
commutative FAAs is defined over the same field GF(p) with characteristic equal to a prime
p 5 2q þ 1, where q is a 256-bit prime.

Suppose the multiplicative group of the first FAA is generated by a basis

< B0
1;B

0
2;B

0
3;B

0
4>. Then the following four vectors B1 ¼ B02

1 , B2 ¼ B02
2 , B3 ¼ B02

3 , and

B4 ¼ B02
4 compose a basis of a primary group of order q4, which contains qþ 1 cyclic groups

of order q. Each elementV of the said primary group can be uniquely represented as a product

of some powers of the elements of the basis< B1; B2; B3; B4 >:V ¼ Bi
1; B

j
2; B

k
3; B

h
4, where

i, j, k, h5 0, 1, 2, . . ., q� 1. The power vector (i, j, k, h) can be called four-dimensional logarithm
(or simply logarithm) of the vectorV over the basis< B1; B2; B3; B4 >. Evidently the value
of the logarithm of the vector V depends on the fixed basis, i. e., for different bases the
logarithm of a fixed vector V has different values.

Let us make the following remark about the logarithm of the scalar vector, which is
essential for understanding the method of constructing post-quantum digital signature
schemes described below. Selection of a random basis leads to a random value of the
logarithm of the scalar vector S 5 Eα, where α is a scalar multiplier. Therefore, fixing at
random a basis in the first FAA and a basis in the second FAA for the fixed scalar vector S
one gets different values of log S.

3. Proposed method
Themethod is based on the idea of selecting random bases of primary groups of order 2 in the
first and second algebras, and then calculating the first and second public keys as a product
of powers of the elements of the corresponding basis, the same powers being used to calculate
corresponding element of the first and second public key. The latter is to provide possibility
to generate a single digital signature, for which one verification equation (written for the first
public key) and another verification equation (written for the second public key) are satisfied.

Such doubling of the verification equation should force a potential signature forger to
calculate the same values of logarithms of the corresponding public-key elements. However,
the fact that the corresponding public-key elements are computed using the same powers of
the exponentiation operation can be potentially used to compute bases over which the
logarithms of the corresponding public-key elements are equal.

Therefore, the technique of scalar multiplication is used. This technique consists in
including an additional scalar multiplication of the public-key elements. Different scalar
multipliers are used for computing different element of the same public key, but the same
scalar multiplier is used for computing corresponding elements of the first and second public
keys. Due to scalar multiplications the logarithms of the corresponding elements of public
keys (over randomly selected bases in the first and second FAAs) become different. The
multiplications by scalars acts as masking operations that hide the 2-dimensional cyclicity
groups set by the initially selected bases in each of the commutative FAA.

Introducing an additional signature element we provide correctness of the signature
scheme the doubled verification equation complemented with the technique of scalar
multiplication.
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4. Post-quantum signature scheme
An arbitrary vector G of order q generates a cyclic group including q � 1 vectors of the
order q. The multiplicative group of each of the FAAs includes q4 � 1 different vectors of
the order q. Therefore, with probability ≈1 � q�3 a random vector Q of the order q sets a
basis <G,Q> of primary group of order q2, including q2� 1 different vectors of the order q.
Then with probability≈1� q�2 a random vectorV of the order q sets a basis <G,Q,V> of
primary group of order q3, including q3 � 1 different vectors of the order q. Then with
probability ≈1 � q�1 a random vector W of the order q sets a basis <G, Q, V, W> of
primary group of order q4. Thus, most likely is the case, when two (four) random vectors
of order q set a basis of a primary group of order q2 (q4), which has two-dimensional
(four-dimensional) cyclicity. However there is a probability that two (four) random vectors
set a generator system of the primary group of order q (≤q3). The latter probability can be
called a failure probability.

In each of the commutative FAAs used as algebraic support of the developed signature
algorithm, the failure probability is negligibly small, i.e., equals to ≈ q�3 (≈q�1) when setting
the basis of two-dimensional (four-dimensional) cyclicity by selection of two (four) random
vectors of order q.

Calculation of the first and second public keys that compose a single public key is
performed as follows:

(1) Generate two uniformly random vectorsG andQ of order q in the first FAA and two
uniformly random vectors D and H of order q in the second FAA.

(2) Generate at random three 256-bit integers y1 < q, y2 < q, and α < p, where α is a
primitive element modulo p, and calculate the first element of the first public key
Y1 ¼ Gy1Qy2α and the first element of the second public key Y2 ¼ Dy1Hy2α.

(3) Generate at random three 256-bit integers z1 < q, z2 < q, and β < p, where β is a
primitive element modulo p, and calculate the second element of the first public key
Z1 ¼ Gz1Qz2β and the second element of the second public key Z2 ¼ Dz1Hz2β.

(4) Generate at random two 256-bit integers u< q and γ< p, where γ is a primitive element
modulo p, and calculate the third element of the first public key U1 5 Guγ and the
third element of the second public key U2 5 Duγ.

This algorithm outputs the first 384-byte public key (Y1, Z1, U1) and the second 384-byte
public key (Y1,Z1,U1). These two key compose a single 768-byte public key. The private key
represents the set of eight 32-byte integers (y1, y2, α, z1, z2, β, u, γ) and the set of four 128-byte
vectors (G, Q, D, H). Total size of the private key is equal to 768 bytes.

To generate (and then verify) a signature to an electronic document M, a secure 256-bit
hash function fH is supposed to be used.

4.1 Signature generation algorithm

(1) Generate tree uniformly random integers k < q, t < q, and ρ < p.

(2) Calculate the vector R1 5 GkQtρ.

(3) Calculate the vector R2 5 DkHtρ.

(4) Calculate the first signature element e that is a hash-function value calculated from
the documentM, to which the vectorsR1 andR2 are concatenated: e5 fH (M,R1,R2).

(5) Calculate the second signature element s: s ¼ z−12 (t � y2e) mod q.
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(6) Calculate the third signature element d: d 5 u�1(k � y1e � z1s) mod q.

(7) Calculate the fourth signature element σ: σ 5 ρα�eβ�sγ�d mod p.

The signature represents the following set of four 32-byte integers (e, s, d, σ) with total size
equal to 128 bytes. Computational complexity of the signature generation procedure can be
roughly estimate as four exponentiations in the used four-dimensional FAAs and three
exponentiations in GF(p) or as ≈26000 multiplications in GF(p).

4.2 The signature verification algorithm

(1) Calculate the vector R*
1 ¼ Ye

1Z
s
1U

d
1σ.

(2) Calculate the vector R*
2 ¼ Ye

2Z
s
2U

d
2σ.

(3) Compute the hash-function value from the documentM to which the vectors R*
1 and

R*
2 are concatenated: e* 5 fH(M, R*

1, R
*
2).

(4) If e* 5 e, then the signature is genuine, else the signature is rejected.

Computational complexity of the signature verification procedure can be roughly estimate as
six exponentiations in the used four-dimensional FAAs or as≈37250multiplications inGF(p).

4.3 Signature scheme correctness proof
Consider a signature (e, s, d, σ) that has been computed in full correspondence with the
signature generation procedure. Suppose the signature (e, s, d, σ) is submitted to the input of
the verification procedure, then we have the following proof of the correctness of the
introduced digital signature algorithm:

R1* ¼ Ye
1Z

s
1U

d
1σ ¼

¼ G
ey1Q

ey2αeG
sz1Q

sz2βsGduγdσ ¼
¼ Gey1þsz1þduQey2þsz2αeβsγdρα−eβ−sγ−d ¼
¼ G

ey1þsz1þðk−ey1−sz1ÞQey2þðt−ey2Þρ ¼
¼ GkQtρ ¼ R1;

R2* ¼ Ye
2Z

s
2U

d
2σ ¼

¼ Dey1Hey2αeDsz1Hsz2βsDduγdσ ¼
¼ Dey1þsz1þduHey2þsz2αeβsγdρα−eβ−sγ−d ¼
¼ Dey1þsz1þðk−ey1−sz1ÞHey2þðt−ey2Þρ ¼
¼ DkHtρ ¼ R2;

fR1* ¼ R1;R2* ¼ R2g0e * ¼ e

The equality e* ¼ emeans that the input digital signature is accepted as a genuine signature,
i.e. the developed signature scheme performs correctly.

5. Discussion
We refer the developed digital signature algorithm to type of HDLP-based signature schemes,
since the vectors belonging to some primary two-dimensional cyclicity group, which is
hidden in a primary four-dimensional cyclicity group, are used in calculating the elements of
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the public key and generating the signature. In our case, the masking operations are scalar
multiplications, which is a new technique for constructing HDLP-based signature schemes.

The technique of doubling the verification equation when designing a signature scheme
was previously used in [12, 14], but in the proposed method it is extended to the case of using
two different algebras as a single algebraic carrier of the signature scheme. At the same time,
it has a new purpose, which is to provide binding of public key elements to a fixed hidden
group in each of the used algebras.

The last point is important to ensure that the signature scheme is resistant to signature
forgery by a person who has the ability to efficiently calculate a four-dimensional algorithm
using a new type of quantum computer that may appear in the future. The resistance of the
proposed algorithm to the attacks of the specified alleged person is due to the fact that the
signature forger does not know the basis over which it is required to calculate four-
dimensional logarithms.

As a substantiation of resistance to quantum attacks, it should be noted that the proposed
signature scheme satisfies the general criterion of post-quantum security used to develop
HDLP-based signature schemes described in the papers [12–14]. The mentioned criterion is
formulated as follows [12]: “Based on the public parameters of the signature scheme, the
construction of a periodic function containing a period with the length depending on the
discrete logarithm value should be a computationally intractable task.”The fulfillment of this
criterion in the developed signature scheme is ensured by the fact that the elements of the first
(second) public key form the basis of a primary group of the order q3 in the first (second)

algebra used as an algebraic carrier, therefore, all possible productsYi
1Z

j
1U

k
1 in the first FAA

and Yi
2Z

j
2U

k
2 the second FAA for i, j, k5 0, 1, 2 . . ., q� 1 run through all the elements of the

said primary group and periodic functions F1 ði; j; kÞ ¼ Yi
1Z

j
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k
1 and F2 ði; j; kÞ ¼ Yi

2Z
j
2U

k
2

contain periods having the lengths (aq, bq, cq), where a, b, c∈{0, 1}, i.e. these two functions do
not contain periods associated with secret values y1, y2, α, z1, z2, β, u, γ. Thus, the Shor
algorithm [1] based on efficiency of a quantum computer to find period length of periodic
functions set in a finite cyclic group and possible future quantum algorithm for periodic
function set in commutative groups of general type are not directly applicable for breaking
the proposed signature scheme.

Our preliminary assessment of the security of the developed signature scheme shows that
using a 256-bit value of the prime number q provides 256-bit security to signature forgery. For
a more reasonable choice of parameters, it is necessary to perform a more detailed and
comprehensive security study, which is an independent task of a separate work.

Using a non-optimized implementation on a common laptop computer with
microprocessor Intel Core i7-6567U at 3.3 GHz, the developed HDLP-based signature
generation algorithm outputs about 1,500 signatures per second. Its performance can be

Signature scheme
Signature
size (byte)

Public key
size (byte)

Signature
generation

performance (a.u.)

Signature
verification

performance (a.u.)

Falcon [17] 1,280 1,793 50 25
Dilithium [16] 2,701 1,472 15 2
Rainbow 64 150,000 – –
HDLP-based [12] 192 768 50 80
HDLP-based [14] 192 512 40 80
2048-bit RSA 256 288 10 90
Proposed 128 768 70 50

Table 3.
Comparison with some
known post-quantum

signature schemes
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increased significantly when optimizing the software implementation, however the latter
item is outside the scope of this paper. Using the said implementation, correctness of the
introduced signature scheme had been experimentally demonstrated.

At present the NIST world competition [4] for the development of post-quantum public-key
cryptosystems has entered the third stage [5]. The finalists in the category of post-quantum
digital signatureswere Falcon [17] andCrystals-Dilithium [16], andRainbow [18]. It is interesting
to compare the proposed signature schemewith the finalists, with other HDLP-based signatures
[12, 14], and with 2048-bit RSA signature algorithm [19]. Table 3 presents a rough comparison
which uses the published results of comparing the performance of the finalists with each other
and with the algorithm RSA-2048. To get performance comparison of the proposed signature
schemewithRSA-2048wehad taken into account that theprivate (public) exponent inRSA-2048
has length about 2048 (256) bits and computational difficulty of one multiplication modulo a
2048-bit can be roughly estimated as 64 multiplications modulo a 257-bit number.

This comparison shows that the proposed signature algorithm has significantly smaller
sizes of the public key and signature relative to the finalists of the NIST competition. The
exception is the algorithm Rainbow with the minimum signature size (64 bytes), but it has an
excessively large public key size (150,000 bytes). At the same time, the above comparison
does not take into account the possibility of using optimization mechanisms for specific
implementations of the developed signature algorithm, the use of which will increase the
performance of both the signature generation procedure and the signature verification
procedure by a factor of 3–5.

The main advantage of the proposed algorithm compared to the finalists of the NIST
competition is the smaller size of the public key and the signature. However, the finalists have
successfully past a long time term of security testing and the proposed algorithm show
potential possibility to reduce significantly the size of signature (by a factor of ≈10) and of
public key (by a factor of≈2), independent detailed security study of the introduced signature
scheme is needed though.

Nevertheless, the finalists have successfully passed long security testing. Like, the
recently introduced HDLP-based post-quantum signature schemes [12, 14], the proposed
algorithm only show a potential possibility to significantly reduce the size of the signature
and public key. If further independent security investigation confirm the authors’
expectations, then we can say that there is a way to solve the said important practical
problem. The reader can make a significant contribution to clarifying this issue.

As compared with the analogous [12, 14], the proposed signature scheme provides shorter
signatures, a bit higher signature generation performance and a bit lower signature
verification performance.

6. Conclusion
A fundamentally new design method and a practical HDLP-based post-quantum digital
signature algorithm has been introduced. The proposed method and signature scheme are
quite simple to understand. One can suppose that the proposed method opens up the
possibility of developing a new class of practical post-quantum signature algorithms. The
latter represents a significant interest in the light of the widely conducted researches on
the development of candidates for post-quantum digital signature standards.
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