To read this content please select one of the options below:

A new methodology to evaluate the performance of physics simulation engines in haptic virtual assembly

Germanico Gonzalez-Badillo (Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico)
Hugo I. Medellin-Castillo (Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico)
Theodore Lim (Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK)
James M. Ritchie (Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK)
Raymond C.W. Sung (Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK)
Samir Garbaya (Institut Image, Arts et Metiers ParisTech, Chalon sur Saone, France)

Assembly Automation

ISSN: 0144-5154

Article publication date: 1 April 2014

614

Abstract

Purpose

In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly applications is proposed. This methodology can be used to assess the performance of any physics engine. To prove the feasibility of the proposed methodology, two-third party PSEs – Bullet and PhysXtm – were evaluated. The paper aims to discuss these issues.

Design/methodology/approach

Eight assembly tests comprising variable geometric and dynamic complexity were conducted. The strengths and weaknesses of each simulation engine for haptic virtual assembly were identified by measuring different parameters such as task completion time, influence of weight perception and force feedback.

Findings

The proposed tests have led to the development of a standard methodology by which physics engines can be compared and evaluated. The results have shown that when the assembly comprises complex shapes, Bullet has better performance than PhysX. It was also observed that the assembly time is directly affected by the weight of virtual objects.

Research limitations/implications

A more comprehensive study must be carried out in order to evaluate and compare the performance of more PSEs. The influence of collision shape representation algorithms on the performance of haptic assembly must be considered in future analysis.

Originality/value

The performance of PSEs in haptic-enabled VR applications had been remained as an unknown issue. The main parameters of physics engines that affect the haptic virtual assembly process have been identified. All the tests performed in this study were carried out with the haptic rendering loop active and the objects manipulated through the haptic device.

Keywords

Acknowledgements

The authors acknowledge the financial support from CONACYT (National Science and Technology Council of Mexico) research grant CB-2010-01-154430 and EPSRC/IMRC grants 113946 and 112430.

Citation

Gonzalez-Badillo, G., I. Medellin-Castillo, H., Lim, T., M. Ritchie, J., C.W. Sung, R. and Garbaya, S. (2014), "A new methodology to evaluate the performance of physics simulation engines in haptic virtual assembly", Assembly Automation, Vol. 34 No. 2, pp. 128-140. https://doi.org/10.1108/AA-05-2013-046

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited

Related articles