Index

Agenda 2030, 88–89 Algorithmic bias, 131–132	Competitive urbanism, limits of, 131–133
Algorithms, 155–156	Compliance, 29
Artificial intelligence (AI), 29–30, 58,	COVID-19 pandemic, 140
83–84, 119, 137–138	Cross-sector collaboration, 147–148
Automation, 23	Cultural differences, 59–61
	Cultural drivers, 59–61
Batteries, 93	Culture, 56
Big data, 18	Cybersecurity, 137–138
analytics, 58, 83–84, 119	measures, 29
Blockchain, 58, 137–138	,
Bottom-up approach, 67–68, 70, 72,	Data acquisition, 18
139	Data analysis, 18–19, 90
Businesses, 101, 129	Data analytics, 23, 58–59, 80, 92–93
creation, 105–107	Data curation, 19
environment, 99-100	Data ecosystem, 6, 8, 16–17
	local and national, 26–28
Cameras, 58–59	Data governance, 29
CCTV cameras, 80–81	Data management in city, 21-22
Challenges, 137–138	Data privacy, 137-138, 148-149
"Cinturon Verde" (Green Belt)	Data security, 131-132, 148-149
initiative, 86	Data sharing, 51–54
Citizen expectations, 119	Data storage, 19–20
Citizen resilience, 140	security, and challenges, 28-30
Citizen-centric smart city projects,	Data utilization, 20
56–58	Data value chain, 17–20
Citizens, 7, 70, 125, 127, 139,	Data-driven decision-making, 73-74
144	Decision-making processes, 56, 59
Citizens' engagement, 73, 85, 87	Digital art installations, 131
City Brain initiative, 58–59	Digital divide, 87, 132, 154
City/cities, 1, 3, 5, 7–8, 10, 26–27, 37,	Digital implementation, 16–17
101, 118	data management in city, 21-22
attractiveness, 124-131	data storage, security, and
as hub for innovation and business	challenges, 28–30
creation, 102–104	data value chain, 17–20
Cloud storage, 28	local and national data ecosystem,
Collaborative partnerships, 49–51	26–28
Community organizations, 70	in smart cities, 22–26
Companies, 128–129	Digital inclusion, 120

Digital infrastructure, 73	Gender entrepreneurship, 109–111
Digital outcomes in urban	General Data Protection Regulation
environment, 79–87	(GDPR), 29
Digital services, 24	Geographic patterns, 73
Digital technologies, 2–3, 83, 118–119,	cultural and socioeconomic drivers,
122, 124	59–61
and services, 22	East and South Asia, 65-66
Digital tools, 23	Europe and North America, 63-64
Digitalization, 23–24	geographical distribution and
Dimensions of smart cities, 31, 33, 45	internal drivers of smart city
, , ,	projects, 63–66
Eco-Management and Audit Scheme	geographical influence on smart city
(EMAS), 108–109	management, 61–63
Economic competitiveness, 118–119	government approach in smart city
Economic ecosystem, 113	projects, 66–72
Economic environment, 101–102, 105	implications, perspectives, and
Economic growth, 60–61	urban trajectories, 73–74
Ecosystem, 15–16	Latin America, 64–65
Effective communication, 145–146	smart city implementation, 55–59
Efficiency, 4, 80, 118	Global competition, 118
Electric vehicles (EVs), 48–49	Globalization, 119
Electronic platforms, 35	Governance, 34, 36
Engagement technologies, 85–86	bodies, 7
Entrepreneurial ecosystems boost	Government approach in smart city
smart city projects, 111–112	projects, 66–72
Entrepreneurial vision of smart city,	bottom-up approach, 70–72
152–154	top-down approach, 68–70
Entrepreneurs, 101	Green companies, 108–109
Entrepreneurship, 100	Green spaces, 94–95
Environmental outcomes of smart city,	Guidelines, 139
87–96	,
Environmental sustainability, 118	Hofstede's cultural dimensions theory,
Ethical considerations, 29, 131–132	56
European Innovation Partnership on	Horizon 2020 program, 78
Smart Cities and	Human-centric approach, 32–33
Communities (EIP-SCC), 78	11
European Union, 78, 89	Inclusivity, 73
Experimentation, 149–150	Individualism–collectivism, 56
•	Indulgence-restraint, 56
Female entrepreneurs, 109–111	Information and Communication
Female entrepreneurship, 103–104	Technologies (ICTs), 5-6,
Final remarks, 157–159	32, 103, 120–121
Firewalls, 29	in government organizations, 35
•	Innovation, 100, 149–150
Gamification, 43-44	ecosystems, 15–16
Gardens, 94–95	Innovative companies, 108

Innovative entrepreneurial ecosystem, Personalized services, 83 Policymakers, 7, 101, 144, 154 Institutions, 7 Power distance, 56 Integration, 44 Privacy, 29, 131-132 Intelligent transportation systems, 80 Public managers, 7, 41 International initiatives, 120–121 Public services, 17-18 Internationalization in smart city development, 120-122 Quality of life, 78 Internet of Things (IoT), 21, 58, 83–84, 92–93, 103, 119, 137–138 Regular security audits, 29 Renewable energy sources, 80 Interoperability, 51–54 Intrusion detection systems, 29 Resilience, 140, 150-151 Life quality and equality, 89–92 Safer Travel App, 81 Local companies, 103 Security, 44 Local data ecosystem, 26-28 Self-reinforcing cycle, 112 Sensors, 58-59, 80 Local ecosystem, 79 Local growth and economic outcomes, SGSecure app, 82 104-111 Smart city/cities, 1–3, 5, 17–18, 31, 100, Long-term orientation, 56 108, 137–138 attractiveness, 9–10 city development, 45-47 Machine learning (ML), 21, 29–30, 83-84, 151-152 city to, 1–3 Managers, 144-154 collaborative partnerships and Marketing innovation in smart city stakeholder engagement, development, 120-122 49 - 51Masculinity–femininity, 56 competition in digital edge, 118–120 competitive edge, 10-12 Municipalities, 24 'MyHelsinki' platform, 84 data ecosystem and key actors, 6-8 data sharing and interoperability, National data ecosystem, 26–28 51 - 54development, 131-133 National Recovery and Resilience Plan digital implementation in, 22–26 (PNRR), 37, 92 Navigating urban environment, 139 dimensions, 8-9, 31, 33, 45 Nearly Zero-Emission Building project ecosystems, 16, 101-102 (NZEB project), 25, 36–37 future directions, 157–159 New businesses, 105 geographical distribution and Nonprofit organizations (NPOs), internal drivers of smart city 147-148 projects, 63-66 geographical influence on smart city management, 61–63 Online learning platforms, 43–44 Online portals, 23 guideline for navigating smart city Open data, 6 edge, 138–154 Organizational practices, 56 ICTs, 5–6 implementation, 55–59 Parks, 94-95 initiatives, 151–152

integrated planning and policy Technological infrastructure, 24–25 frameworks, 48-49 Technological reliance, 131-132 limits and criticism, 154–157 Technology, 4, 32, 35, 79-80, 102, 131 objectives and expected outcomes, Technology-centric smart city projects, 56, 58-59 77 - 79orchestrating and balancing smart Top-down approach, 67–68, 70, 139 city dimensions, 47-54 Tourists, 129–131 trajectories, 5-6 Transport for London (TfL), 81 Smart destination, 124-131 Twinning relationships, 64 Smart economy, 8, 32, 40, 42, 46-47 Smart environment, 8, 32, 36, 38 Uncertainty avoidance, 56 Smart governance, 8, 32, 34, 36 Universities, 101 Smart living, 8, 32, 42, 44 Urban competitiveness, 131 Smart mobility, 8, 32, 38, 40 Urban ecosystem, 101, 122, 124 Smart museums, 131 Urban efficiency, 92-94 Smart pedestrian crossings, 82–83 Urban environment, 99-100 Smart people, 8, 32, 44-45 assessing and evaluating urban Smart tourism, 130 outcomes, 96-98 Social equity, 61 citizens' engagement, 85–87 Social media, 25-26, 70 customized and tailored services, Socioeconomic drivers, 59-61 83 - 85Solar panels, 93 digital outcomes in, 79-87 Stakeholder engagement, 49-51 environmental outcomes of smart Start-ups, 107 city, 87-96 safety and monitoring, 81-83 Strategic differences, 56 smart city objectives and expected Sustainability, 4, 77–78, 118, 131, outcomes, 77-79 150 - 151Sustainable Development Goals Urban land-use planning, 94 Urban mobility plan, 39 (SDGs), 37, 88-89 Sustainable urban environment, 94-96 Urbanism, 60 Urbanization, 118 Talents, 127–128 Users, 139–144 Technological advancements, 119 Technological dependency, 137-138 Video surveillance, 90 Technological entrepreneurial Virtual reality (VR), 43–44 ecosystem, 112 Technological foundations, 73 Wind turbines, 93