
UNDERSTANDING INDUSTRY 4.0

AL, THE INTERNET OF THINGS,

AND THE FUTURE OF WORK

BRUNO S. SERGI, ELENA G. POPKOVA, <u>ALEKSEI V. BOGOVIZ, AND TATIANA</u> N. LITVINOVA

UNDERSTANDING INDUSTRY 4.0

UNDERSTANDING INDUSTRY 4.0: AI, THE INTERNET OF THINGS, AND THE FUTURE OF WORK

BY

BRUNO S. SERGI

Harvard University, USA and University of Messina, Italy

ELENA G. POPKOVA

Plekhanov Russian University of Economics, Moscow, Russia

ALEKSEI V. BOGOVIZ

National Research University "Higher School of Economics", Russia

AND

TATIANA N. LITVINOVA

Volgograd State Agrarian University, Russia

Emerald Publishing Limited Howard House, Wagon Lane, Bingley BD16 1WA, UK

First edition 2019

Copyright © 2019 Emerald Publishing Limited

Reprints and permissions service

Contact: permissions@emeraldinsight.com

No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without either the prior written permission of the publisher or a licence permitting restricted copying issued in the UK by The Copyright Licensing Agency and in the USA by The Copyright Clearance Center. Any opinions expressed in the chapters are those of the authors. Whilst Emerald makes every effort to ensure the quality and accuracy of its content, Emerald makes no representation implied or otherwise, as to the chapters' suitability and application and disclaims any warranties, express or implied, to their use.

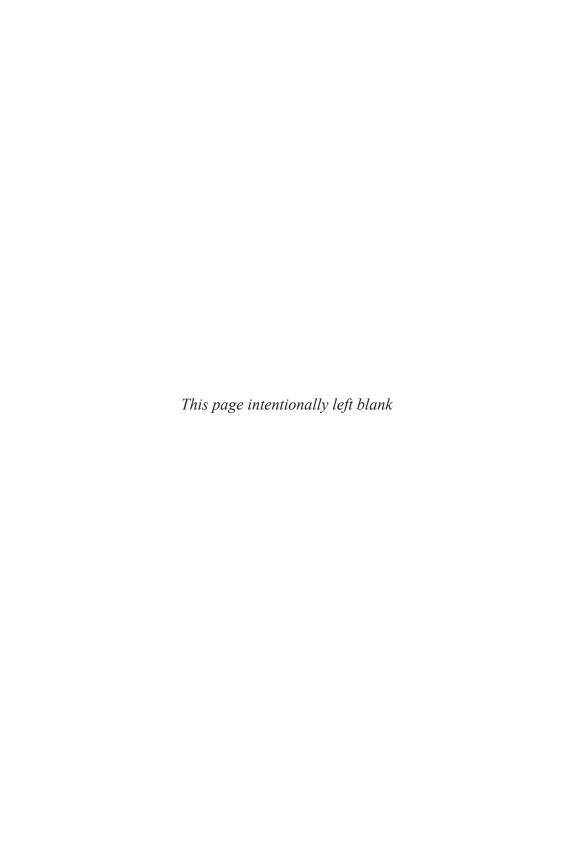
British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-78973-312-9 (Print) ISBN: 978-1-78973-311-2 (Online) ISBN: 978-1-78973-313-6 (Epub)

ISOQAR certified Management System, awarded to Emerald for adherence to Environmental standard ISO 14001:2004.

Certificate Number 1985



Contents

List of Figures and Tables	ix
About the Authors	xv
Foreword	xvii
Part I Overview of Future Professions in Industry	
Chapter 1 Outlines of the Context for Industry 4.0	3
Chapter 2 Future Professions in Industry	11
Chapter 3 Map of Competences for Representatives of Future Professions in Industry	17
Part II Future Professions in Agriculture	
Chapter 4 Future Outlines of Agriculture in the Agro-Industrial Complex 4.0	25
Chapter 5 Future Professions in Agriculture	33
Chapter 6 Map of Competences for Representatives of Future Professions in Agriculture	41
Part III Future Professions in Medicine	
Chapter 7 Future Outlines of Medicine at the Threshold of a Genetic Revolution	49
Chapter 8 Future Professions in Medicine	55
Chapter 9 Map of Competences for Representatives of Future Professions in Medicine	63

	Part IV	Future Planned Professions in Education	
Chapter 10 of the Information		outlines in the Sphere of Education in the Age onomy	73
Chapter 11	Future P	rofessions in Education	79
Chapter 12 Professions		Competences for Representatives of Future on	85
Pa	art V Ex	xpected Professions in Body Care and Fitness	
Chapter 13	Future O	outlines of the Body Care and Fitness Sector	95
Chapter 14	Future P	rofessions in Body Care and Fitness	101
•		of Competences for Representatives of Body Care and Fitness	109
	Part V	The Key Future Professions in R&D	
Chapter 16 the Formation		are Outline of the R&D Sector in the Context of Innovation Economy	119
Chapter 17	Future P	rofessions in R&D	133
Chapter 18 Future Profe	_	of Competences for Representatives of R&D	139
	Part VI	I Perspectives on Future Professions in Transport and Communications	
	ext of a Re	Putline of the Transport and Communications Sector volution in Information Communication	149
Chapter 20	Future P	rofessions in Transport and Communications	157
Chapter 21 Future Profe		of Competences for Representatives of Transport and Communications	165
Part	VIII Re	commendations for Successful Modern Workers	
Chapter 22 All Future F		a Features and Competences that are Necessary for	175

	Contents	vii
Chapter 23 The Concept of Lifelong Learning as the Basis for Mastering Future Professions		183
Chapter 24 An Algorithm for Selecting and Mastering Future Professions		189
Chapter 25 The Model of State Management for the Process of Selecting and Mastering Future Professions		195
Conclusions		201
List of Acronyms		203
References		205
Index		223

List of Figures and Tables

Figures

Fig. 1.1	A Unified View for the Future Outline of Industry in the	
	Context of the Formation of Industry 4.0.	9
Fig. 3.1	The Algorithm for Mastering Future Professions	
	in Industry.	21
Fig. 4.1	Future Outlines of Agriculture Under the Conditions of	
	AIC 4.0.	30
Fig. 6.1	Algorithm for Mastering Future Professions	
	in Agriculture.	45
Fig. 7.1	Future Outlines of Medicine at the Threshold of the	
	Genetic Revolution.	52
Fig. 9.1	Algorithm for Mastering Future Professions in Medicine.	69
Fig. 10.1	Future Outlines of the Sphere of Education in the	
_	Age of the Information Economy within the	
	Scenario of Remote Education.	78
Fig. 12.1	Algorithm for Mastering the Future Professions in	
_	Remote Education.	90
Fig. 13.1	Factors, Features, and Tools Influencing the Achievement	
	of an Ideal/Model Appearance in the Future (2030).	97
Fig. 13.2	The Future Outline of the Body Care and Fitness Sector.	100
Fig. 15.1	Algorithm for Mastering Future Professions in	
	Body Care and Fitness.	115
Fig. 16.1	Correlation Graph (Regression Curve) of Robot Supply	
	and GDP per Capita in the World in 2009–2021.	122
Fig. 16.2	Correlation Graph (Regression Curve) of Expenditures	
	for R&D and GDP per capita in the World in 2009–2021.	122
Fig. 16.3	Correlation Graph (Regression Curve) of Robot Density	
	and GDP per capita in Developed Countries in 2019.	126
Fig. 16.4	Correlation Graph (Regression Curve) of Expenditures	
	for R&D and GDP per capita in Developed Countries	
	in 2019.	127
Fig. 16.5	Correlation Graph (Regression Curve) of Robot Density	
	and GDP per capita in Developing Countries in 2019.	127

x List of Figures and Tables

Fig. 16.6	Correlation Graph (Regression Curve) of Expenditures	
	for R&D and GDP per capita in Developing Countries	
F: 165	in 2019.	127
Fig. 16.7	Future Outline of the R&D Sector in the Context of	121
F: 10.1	the Formation of the Innovation Economy.	131
Fig. 18.1	Algorithm for the Mastering of Future Professions	1 4 5
E' 10.1	in R&D.	145
Fig. 19.1	Future Outline of the Sphere of Transport Amid the	
	Revolution of Information and Communication	1.50
E:- 10.2	Technologies.	152
Fig. 19.2	Future Outline of the Sphere of Communications	
	Amid the Revolution of Information and	155
Eia 21 1	Communication technologies.	155
Fig. 21.1	Algorithm for Mastering Future Professions in Transport and Communications.	170
Ei. 22 1		1/0
Fig. 22.1	The Mechanism for Mastering Professions and Executing	178
Eig 22.2	Professional Functions at Present (Early 2019).	1/0
Fig. 22.2	The Mechanism for Mastering Professions and Execution of Professional Experience in the Entury (2025, 2020)	180
Fig. 23.1	of Professional Functions in the Future (2025–2030)	100
Fig. 23.1	The Logic for a Modern Employee to Master a Future	188
Eig 24 1	Profession Based on the Concept of Lifelong Learning.	100
Fig. 24.1	The Algorithm for the Selection and Mastering of Future Professions.	191
Fig. 25.1	The Model for State Management of the Process of	171
1 1g. 23.1	Selecting and Mastering Future Professions.	198
	Selecting and Mastering I uture I folessions.	170
Tables		
Table 1.1	Number of Employees in the Industry and Share of Industry	
	in GDP (as of 2018).	4
Table 1.2	Scenarios for the Development of Industry in the Context	_
	of the Formation of Industry 4.0.	6
Table 2.1	Dynamics of Labor Efficiency in Industry in the Leading	
	Manufacturing Countries of Industrial Products in Terms	
	of their Share of the Global Market and GDP (Top 10),	1.0
T 11 22	as of 2018.	13
Table 2.2	Functions Performed in Industry under the Conditions of	
	Industry 4.0 given Business Processes and Subjects	1.4
Takla 2 1	(Human/Machine).	14
Table 3.1	Map of Competences for an AI Tester.	19
Table 3.2	Map of Competences for a Controller of Automatized	20
Table 2.2	Production. Mon of Competences for a Paketetneries Engineer	20
Table 3.3	Map of Competences for a Robototronics Engineer.	20
Table 4.1	The Number of Employees and Unemployment Rates	
	in the 10 Countries with the Most Developed Agricultural	26
Table 4.2	Sectors (as of 2018). Factors Affecting the Future Development of Agriculture.	27
1 auit 4.2	ractors Anecting the rature Development of Agriculture.	41

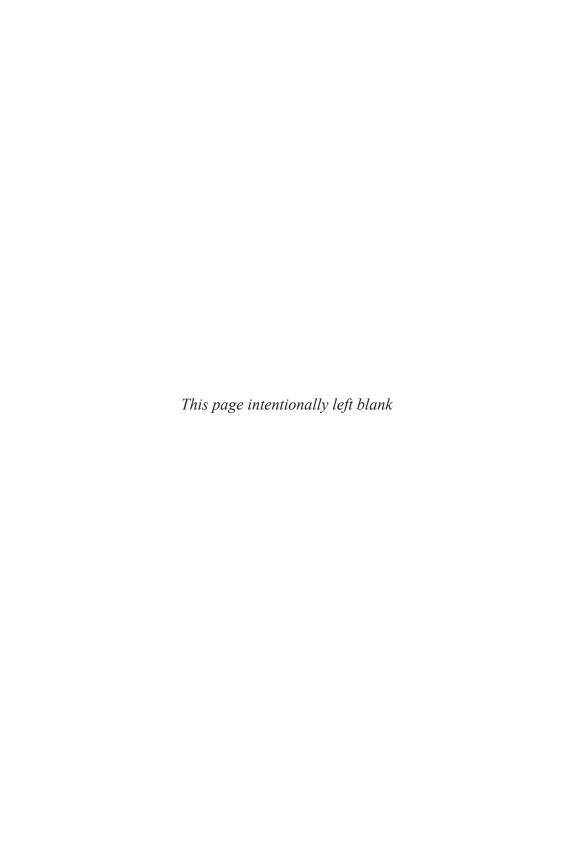
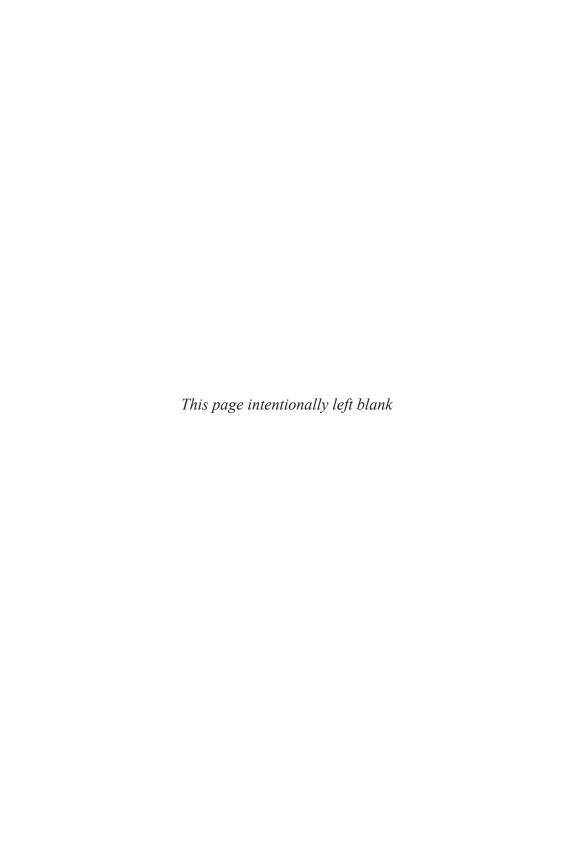

112

Table 4.3 Scenarios for the Adaptation of Agriculture to Challenge	
on its Future Development.	28
Table 5.1 Dynamics of Labor Efficiency in Agriculture in the	
Countries with the Most Developed Agricultural	
Sectors (as of Year-end 2018).	35
Table 5.2 Functions in Agriculture under the Conditions of	
AIC 4.0 given Business Processes and Subjects	
(Human/Machine).	36
Table 6.1 Map of Competences for a Selector.	43
Table 6.2 Map of Competences for an Agricultural Optimizer.	44
Table 7.1 Comparative Approaches of Medical Services Before and	1
After the Genetic Revolution.	51
Table 7.2 Professional Characteristics of Medicine after the Genetic	c
Revolution.	53
Table 8.1 Dynamics of the Number of Employees and Employmen	nt
Rate in Medicine in Countries with a Highly Effective	
System of Healthcare in 2013–2017.	57
Table 8.2 Dynamics of the Unemployment Rate in Medicine in	
Countries with a Highly Effective System of Healthcare i	n
2013–2017.	58
Table 8.3 Functions in Medicine after the Genetic Revolution in	
given Business Processes and Subjects (Human/Machine)	. 60
Table 9.1 Dynamics of Efficiency in Medicine in the Countries	. 00
with Highly Effective Systems of Healthcare in 2013–201	7. 65
Table 9.2 Map of Competences for a Genetic Modifier.	66
Table 9.3 Map of Competences for a Creative Immunologist.	67
Table 10.1 Forecast Scenarios for the Development of the Education	
Sector in the Age of the Information Economy.	77
Table 11.1 Functions in Education in View of Business Processes	/ /
and Subjects (Human/Machine).	82
· · · · · · · · · · · · · · · · · · ·	88
Table 12.1 Map of Competences for a Digital Marketing Specialist.	00
Table 12.2 Map of Competences for School Counselor in Remote Education.	9.0
	89
Table 12.3 Map of Competences for a Remote Teacher.	89
Table 13.1 Characteristics of the Future Outline of the Body Care	0.0
and Fitness Sector.	99
Table 14.1 Dynamics of the Number of Employees and the	
Unemployment Rate in Body Care and Fitness in the	
Countries (Top 25) with the Most Developed	
Plastic Surgery Sectors (As of Year-end 2018).	103
Table 14.2 Functions in Body Care and Fitness in View of Business	
Processes and Subjects (Human/Machine).	104
Table 15.1 Labor Efficiency in Body Care and Fitness in the	
Countries (Top 25) with the Most Developed	
Plastic Surgery Sectors (As of Year-end 2018).	111
Table 15.2 Map of Competences for a Consultant for the	
Change of Human Appearance.	112

Table 15.3	Map of Competences for a Designer of Human	
	Appearance.	113
Table 15.4	Map of Competences for Fitness Instructor and	
	Psychologist.	114
Table 15.5	Map of Competences for a Cosmetologist for	
	the Creation and Removal of Body Parts.	114
Table 16.1	Leaders in Global Ratings and the Values of Key	
	Indicators of the Innovation Economy in 2018.	120
Table 16.2	Dynamics of GDP per capita, Level of Robot Density,	
	and Expenditures for R&D in the Global Economy in	
	2009–2021.	121
Table 16.3	Regression Analysis of Dependence of GDP per capita	
	on Robot Density and Expenditures for R&D in	
	the World in 2009–2021.	123
Table 16.4	Dynamics of GDP per capita, Robot Density, and	
	Expenditures for R&D in Developed Countries in 2019.	124
Table 16.5	Regression Analysis of Dependence of GDP per capita	
	on Robot Density and Expenditures for R&D in	
	Developed Countries in 2019.	125
Table 16.6	Dynamics of GDP per capita, Robot Density, and	
T 11 16 T	Expenditures for R&D in Developing Countries in 2019.	126
Table 16.7	Regression Analysis of Dependence of GDP per capita	
	on Robot Density and Expenditures for R&D in	120
T 11 160	Developing Countries in 2019.	128
Table 16.8	Characteristics of the Future Outline of the R&D	
	Sector in the Context of the Formation of the	120
Takla 17 1	Innovation Economy.	130
Table 17.1	Characteristics of the State of the R&D Sector in the Leading Countries of the Global Economy as of 2018.	135
Table 17.2	Functions in R&D in the Context of the Formation of the	133
14016 17.2	Innovation Economy in View of Business Processes and	
	Subjects (Human/Machine).	137
Table 18.1	Actual and Estimated Indicators of Labor Efficiency	137
14010 10.1	in the Economy as a whole and in the Sphere of R&D in	
	Particular, in G7 and BRICS Countries.	141
Table 18.2	The Map of Competences for a Digital B2B Marketing	
10010 1012	Specialist in R&D.	142
Table 18.3	Map of Competences for a Generator of Innovational	
10010 1010	Ideas.	143
Table 18.4	The Map of Competences for a Tester of the Automatized	
	Innovational Process.	144
Table 19.1	Level of Development of Information and Communication	
	Technologies in Certain Developed and Developing	
	Countries between 2008 and 2018 (and its Growth).	150
Table 19.2	Characteristics of the Future Outline of the Sphere of	
	Transport Amid the Revolution of Information and	
	Communication Technologies.	151

•••
XIII
VIII

Table 19.3	Characteristics of the Future Outline of the Sphere of Communications Amid a Revolution in Information and	
	Communication Technologies.	154
Table 20.1	Dynamics of the Values for the Indicators of Growth	101
10010 2011	and Development in the Sphere of Transport and	
	Communications in the G7 and BRICS between	
	2008 and 2018.	158
Table 20.2	Functions in Transport Amid the Revolution of	130
14010 20.2	Information and Communication Technologies in	
	View of Business Processes and Subjects	
	(Human/Machine).	160
Table 20.3	Functions in Communications Amid the Revolution of	100
1401C 20.3	Information and Communication Technologies in View	
	of Business Processes and Subjects (Human/Machine).	162
Table 21.1	Indicators that Reflect the Place and Role of Transport	102
1abic 21.1	and Communications in the Russian Economy in 2008	
	and 2018.	166
Table 21.2		100
1able 21.2	The Map of Competences for an Operator of Unmanned	167
T-11- 21-2	Transport Vehicles.	167
Table 21.3	Map of Competences for an Engineer of Unmanned	1.7
T 11 01 4	Transport Vehicles.	167
Table 21.4	The Map of Competences for a Developer of New	1.00
T 11 01 5	Modes of Communications.	168
Table 21.5	The Map of Competences for a Specialist in	
	Cyber Security.	168
Table 22.1	The Indicators Reflecting the Value of the Level of	
	Education for Employment in Russia as of Year-end 2018.	177
Table 22.2	Comparative Analysis of the Modern and Future	
	Practice of the Application of the Competence-based	
	Approach to Determine Professions.	179
Table 22.3	Common Features and Competences that are Needed in	
	all Future Professions.	181
Table 23.1	Participation in Lifelong Learning in Certain Countries,	
	as of 2018.	186
Table 23.2	Regression Analysis of the Dependence of Digital	
	Knowledge Index (y) on the Participation of	
	Employees in Lifelong Learning (x) .	187
Table 23.3	Comparative Analysis of the Modern and Future Practice	
	of Lifelong Learning from the Position of Belonging to a	
	Profession.	187
Table 24.1	Criteria for Evaluating General Competences in the	
	Future Economy based on the Competence-based	
	Approach.	193
Table 25.1	Dynamics of the Values of Indicators on the Regulation	
	of the Process of Selecting and Mastering Professions in	
	Russia in 2005–2018.	197


About the Authors

Bruno S. Sergi is an Instructor of the Economics of Emerging Markets and the Political Economy of Russia and China at Harvard University and an Associate of Harvard's Davis Center for Russian and Eurasian Studies and the Harvard Ukrainian Research Institute. He also teaches International Economics at the University of Messina. He is the Series Editor of Cambridge Elements in the Economics of Emerging Markets, the Co-series Editor of the Emerald Publishing book series Lab for Entrepreneurship and Development, and the Associate Editor of The American Economist. He is the Scientific Director of the Lab for Entrepreneurship and Development and of the International Center for Emerging Markets Research at RUDN University in Moscow.

Elena G. Popkova is a Doctor of Economics, a Professor, and a leading Researcher at Plekhanov Russian University of Economics, Moscow, Russia. Her spheres of scientific interest include economic growth, sustainable development, globalization, humanization of economic growth, developing countries, institutionalization of social development, development planning, and strategic planning. She is a Guest Editor for *International Journal of Educational Management* (special issue, 2016, 2018), *International Journal of Trade and Global Markets* (special issue, 2017), *Journal of Entrepreneurship in Emerging Economies* (special issue, 2017), and *Contributions to Economics* (Springer book series). She has more than 300 publications in Russian and foreign peer-reviewed journals and books.

Aleksei V. Bogoviz is a Professor in the Department of Local Administration at the School of Public Administration and a Faculty of Social Sciences in the Higher School of Economics in Moscow, Russia. His spheres of scientific interest include economic growth, sustainable development, globalization, developing countries, institutionalization of social development, planning of development and strategic planning, agriculture, agro-industrial complex, digital economy, and state management. He has more than 200 publications in Russian and foreign peer-reviewed journals and books.

Tatiana N. Litvinova is an Associate Professor of the Department "Economics" in Volgograd State Agrarian University. Her scientific interests include economic growth, sustainable development, development planning, strategic planning, and Russian market of agricultural machinery. She has multiple publications in Russian and foreign peer-reviewed journals on these topics.

Foreword

The global transition to the Fourth Industrial Revolution (Industry 4.0) is already underway. R&D on leading digital technologies is now conducted around the world. The essential novelty of these disparate technologies, aimed at revolutionizing cyber-physical systems, allows them to be classified together as "Industry 4.0." These technologies include the Internet of Things, the blockchain, 3D printing, technologies of virtual and alternate reality, technologies to manage Big Data processing, the use of artificial intelligence, and others.

The increasing accessibility of these leading technologies is stimulating the intensive development of hi-tech spheres of the economy. There is high demand for such breakthrough innovations from both private business and governments, which seek the common goal of an increase in the effectiveness and provision of high global competitiveness in the economy in the long-term. The inflow of public and private financing, as well as the rapid implementation of the results of R&D, ensures practical implementation. In a relatively short period of time (by 2025–2030) it will be possible to replace older technologies in all business processes and to form companies of a new type, which will be part of Industry 4.0.

Each of the three earlier industrial revolutions radically increased the effectiveness of economic activities, reducing marginal costs and raising labor efficiency, but at the same time led to negative social consequences – the growth of unemployment rates and the necessity for retraining and changes in the professions. The consumer and professional spheres of human society are closely interconnected. The advantages of mass accessibility and the emergence of new types of goods in the economy in the short- and even mid-term was outweighed by the drawbacks of complex social adaptations necessitated by changes in the labor market.

As the market for educational services cannot adapt instantaneously, creating new specialties and educational programs to retrain representatives of professions that disappear, and the labor market cannot offer a quick replacement for these lost professions, previous industrial revolutions led to long periods of social adaptation. The reduction of effective demand caused by professional categories losing their source of earned income hindered society from taking advantage of the mass production and accessibility of innovational goods – so the growth of living standards was only seen in the long-term (in 5–10 years).

The Fourth Industrial Revolution will not be an exception. On the contrary, unlike the earlier industrial revolutions, which envisaged the automatization of certain spheres of the economy or business processes, the new industrial

xviii Foreword

revolution will lead to almost complete automatization, which will influence almost all spheres and all business processes. This is a fact that leads us to expect deep transformational processes in the professional sphere of human society and the elevated risk of the emergence of a social crisis.

However, as of now, at the beginning of the Fourth Industrial Revolution, it is possible to prevent such a social crisis by implementing preventative measures to mitigate the effects of the rapid modernization of the professional sphere of human society. This book sets out to determine the most probable changes in the key spheres of the economy, to determine the most prestigious spheres and professions that will be effected, and to offer recommendations on the choices that public and private sector leaders should make to successfully master the disruptions ahead. We hope that this book will become a guide for all interested parties – job applicants, undergraduates, employees, employers, universities, and governments – and will allow for a reduction in the uncertainty of the coming changes and better strategies for adapting to these changes.

Bruno S. Sergi, Elena G. Popkova, Aleksei V. Bogoviz, & Tatiana N. Litvinova