To read this content please select one of the options below:

Geometrical information coded in Maxwell's equations: a review

Daniel Baldomir (Departamento de Física Aplicada and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain)
Manuel Pereiro (Departamento de Física Aplicada and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain)
Juan Arias (Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain)

Abstract

Purpose

The purpose of this paper is to show how the geometrical information of Maxwell's equations is coded into the constitutive equations.

Design/methodology/approach

The Maxwell's equations have been written with the tensorial algebra into a three‐dimensional Euclidean space and compared with the usual four‐dimensional relativistic approach.

Findings

This simple geometry allows the finding of the relativistic information coded on the electric and magnetic fields, showing that they are not independent as relativity affirm obtaining their transformation for a moving inertial observer.

Originality/value

The main value of the paper is to present a simple mathematical tool which enables the engineers or applied physicists to obtain the relativistic transformations of the fields without using four‐dimensional geometries and the more sophisticated mathematical techniques.

Keywords

Citation

Baldomir, D., Pereiro, M. and Arias, J. (2011), "Geometrical information coded in Maxwell's equations: a review", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 30 No. 2, pp. 793-811. https://doi.org/10.1108/03321641111101212

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles