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Abstract
In this paper, we study the different kinds of the primeness on the class of near-rings and we give new
characterizations for them. For that purpose, we introduce new concepts called set-divisors, ideal-divisors, etc.
and we give equivalent statements for 3-primeness which make 3-primeness looks like the forms of the other
kinds of primeness. Also, we introduce a new different kind of primeness in near-rings called K-primeness
which lies between 3-primeness and e-primeness. After that, we study different kinds of prime ideals in near-
rings and find a connection between them and new concepts called set-attractors, ideal-attractors, etc. to make
new characterizations for them. Also, we introduce a new different kind of prime ideals in near-rings called
K-prime ideals.
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1. Introduction
We say that R is a right (left) near-ring if ðR;þÞ is a group, ðR; $Þ is a semigroup and R
satisfies the right (left) distributive law. Throughout this paper, Rwill be a left near-ring. We
say that R is an abelian near-ring if xþ y ¼ yþ x for all x; y∈R and we say that R is a
commutative near-ring if xy ¼ yx for all x; y∈R. A zero-symmetric element is an element
x∈R satisfying 0x ¼ 0. A near-ring R is called a zero-symmetric near-ring, if 0x ¼ 0 for all
x∈R. A constant element is an element y∈R satisfying zy ¼ y for all z∈R. An element x∈R
is called a right (left) zero divisor in R if there exists a non-zero element y∈R such that yx ¼ 0
(xy ¼ 0). A zero divisor is either a right or a left zero divisor. By a near-ring without zero
divisors, wemean a near-ring without non-zero divisors of zero. IfAandBare two non-empty
subsets of R, then the product ABmeans the set fabja∈A; b∈Bg. We say that U is a right
(left) R-subgroup of R, ifU is a subgroup of ðR;þÞ satisfiesUR⊆U (RU ⊆U). We say thatU
is a two-sidedR-subgroup of R, ifU is both a right and a leftR-subgroup ofR. We say that I is
a right (left) ideal of R, if I is a normal subgroup of ðR;þÞ satisfies ðr þ iÞs− rs∈ I for all
i∈ I ; r; s∈R (RI ⊆ I). We say that I is an ideal of R if it is both a right and a left ideal of R. We
say that U is a semigroup right (left) ideal of R, if U is a non-empty subset of R satisfies
UR⊆U (RU ⊆U). We say thatU is a semigroup ideal of R if it is both a semigroup right and
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left ideal of R (some authors call U a right (left, two-sided) R-subset of R [8]). For any group
ðG;þÞ, MðGÞ denotes the near-ring of all maps from G to G with the two operations of
addition and composition of maps. MoðGÞ is the zero-symmetric subnear-ring of MðGÞ
consisting of all zero preserving maps from G to itself (and to make them left near-rings we
should write f ðgÞby gf , where f ∈MðGÞorMoðGÞand g ∈G ). A trivial zero-symmetric near-
ring R is a zero-symmetric near-ring such that the multiplication on the group ðR;þÞ is
defined by xy ¼ y and 0y ¼ 0 for all x∈R− f0g; y∈R. A near-field N is a near-ring in which
ðN − f0g; $Þ is a group. For further information about near-rings, see [8] and [9].

In near-rings, there are five well-known kinds of primeness. We say that: R is 0-prime (the
usual primeness) if, for every two ideals I and J ofR, IJ ¼ f0g implies I ¼ f0gor J ¼ f0g,R is
1-prime if, for every two right idealsK and LofR,KL ¼ f0g impliesK ¼ f0gor L ¼ f0g.R is
2-prime if, for every two right R-subgroups A and B of R, AB ¼ f0g implies A ¼ f0g or
B ¼ f0g. R is 3-prime if, for all x; y∈R, xRy ¼ f0g implies x ¼ 0 or y ¼ 0 and R is equiprime
(e-prime) if, for any 0≠ a; x; y∈R, xca ¼ yca for all c∈R implies x ¼ y. These five kinds of
primeness are equivalent in the class of rings. But in the class of near-rings, we have: (1)R
is equiprime implies that R is zero-symmetric 3-prime, (2) R is 3-prime implies that R is
2-prime, (3) R is zero-symmetric 2-prime implies that R is 1-prime and (4) R is 1-prime implies
that R is 0-prime. For details about these kinds and their examples and relationships see
[1–3,5–7] and [10]. A near-ring (a ring) R is called 3-semiprime (semiprime) if, for all x∈R,
xRx ¼ f0g implies x ¼ 0. An idealP ofR is: (i) a 0-prime ideal ofR if for every two idealsAand
B of R,AB⊆P implies thatA⊆P or B⊆P, (ii) a 1-prime ideal of R if for every two right ideals
AandBofR,AB⊆P implies thatA⊆P orB⊆P, (iii) a 2-prime ideal ofR if for every two right
R-subgroups A and B of R, AB⊆P implies that A⊆P or B⊆P, (iv) a 3-prime ideal of R if for
a; b∈R, aRb⊆P implies that a∈P or b∈P, (v) an e-prime (equiprime) ideal of R if for every
a∈R−P and x; y∈R, xca− yca∈P for all c∈R implies that x− y∈P. Clearly that any near-
ring is a υ-prime ideal of itself, where υ∈ f0; 1; 2; 3; eg. It is well-known that (ii) implies (i) and
(iv) implies (iii). Also, for zero-symmetric near-rings we have (iii) implies (ii). An ideal I of R is
called completely prime if, for a; b∈R, ab∈ I implies that a∈ I or b∈ I. If the zero ideal is
completely prime, then we say that R is completely prime. Then R is completely prime if and
only if R is without zero divisors. For more details about prime ideals, see [2,4,5] and [10].

In [1], the authors gave us a short historical view about the primeness of near-rings. We
will use it and add some information to it.

Several different generalizations of primeness for rings have been introduced for near-
rings. In [6], Holcombe studied three different concepts of primeness, which he called 0-prime,
1-prime and 2-prime. In [5], Groenewald obtained further results for these and introduced
further notion which he called 3-primeness. In [2], Booth, Groenewald and Veldsman gave
another definition, called equiprimeness, or e-primeness. In [10], Veldsmanmademore studies
on equiprime near-rings. In [1], Booth and Groenewald gave an element-wise characterization
of the radical associated with ν -primeness for ν ¼ 1; 2; 3; e.

In this paper we extend the idea of primeness that they did and give some new results for
the primeness of near-rings. Firstly, we introduce new concepts called set-divisors, ideal
divisors, etc. These concepts are generalizations of the concept of zero divisors and give
another characterization of different kinds of the primeness in near-rings and hence in rings.
Also, we study the 3-primeness and give new characterizations of 3-prime (3-semiprime) near-
rings and hence for prime (semiprime) rings. These characterizationsmake 3-primeness looks
like the forms of the other kinds of primeness. In fact, we show that a near-ring (a ring) is
3-prime (prime) if and only if UV ¼ f0g implies U ¼ f0g or V ¼ f0g, where U and V are
semigroup left ideals of R. Hence, a ring is prime if and only if it is without zero-semigroup
right (left) ideal divisors. A similar result is made for 3-semiprime near-rings (semiprime
rings) and we conclude that: for a near-ring R, if r2 ≠ 0 for all r∈R− f0g, then R is
3-semiprime. We show that some kinds of near-rings are 3-prime if and only if they are
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2-prime. Also, we introduce a new kind of primeness in near-rings (the sixth one) called
K-primeness and we show that it is totally different from the other kinds of primeness and it
lies between 3-primeness and e-primeness. Depending on that, we give two chains of
primeness in the class of zero-symmetric near-rings for comparison. In the last part of the
paper, we study different kinds of prime ideals. We introduce a new kind of prime ideals
called K-prime ideals andwe show that they are different from the other kinds of prime ideals.
they lie between 3-prime ideal and e-prime ideals. Also, we give a new characterization of
3-prime ideals and show that P is a 3-prime ideal of R if and only if UV ⊆P implies U ⊆P or
V ⊆P, where U and V are semigroup left ideals of R. We introduce new concepts called
set-attractors, ideal-attractors, etc. which are generalizations of the new concepts above
(set-divisors, etc.).Wemake a connection between these concepts and different kinds of prime
ideals in near-rings to give a new characterization of these prime ideals. Finally, we use these
concepts to show that: P is a completely prime ideal of R if and only if R is without external P
set-attractors.

2. On prime near-rings
Let R be a near-ring. It is clear that R is without zero divisors if and only ifAB ¼ f0g implies
A ¼ f0g or B ¼ f0g, whereA and B are non-empty subsets of R. This observation gives us a
hint of a new definition.

Definition 2.1. Let R be a non-zero near-ring.

(1) LetAbe a non-empty subset of R. We say thatA is a left zero-set divisor (a right zero-
set divisor) of R if there exists a non-empty non-zero subset B of R such that AB ¼ f0g
(BA ¼ f0g). We say thatA is a zero-set divisor of R ifA is a left or a right zero-set divisor ofR.

(2) Let A be an ideal of R. We say that A is a left zero-ideal divisor (a right zero-ideal
divisor) of R if there exists a non-zero ideal B of R such that AB ¼ f0g (BA ¼ f0g). We say
that A is a zero-ideal divisor of R if A is a left or a right zero-ideal divisor of R.

We can do same definitions if A is a left (right) ideal, a left (right) R -subgroup, a two-sided
R-subgroup, a semigroup left (right) ideal or a semigroup ideal.

Definition 2.1 generalizes the concept of zero divisors in rings and near-rings. So, we have
the following remark.

Remark 2.1. From Definition 2.1, we can rewrite the definitions of different kinds of the
primeness as follows:

Let R be a near-ring. Then

(1) R is completely prime if and only if R is without zero divisors if and only if R is
without zero-set divisors.

(2) R is 0-prime if and only if R is without zero-ideal divisors.

(3) R is 1-prime if and only if R is without zero-right ideal divisors.

(4) R is 2-prime if and only if R is without zero-right R-subgroup divisors.

Remark 2.1 enhances a question: Canwe get a definition of 3-primeness like that mentioned in
Remark 2.1? The following result answers this question.

Theorem 2.1. Let R be a near-ring. Then the following statements are equivalent:

(i) R is 3-prime.

(ii) aU ¼ f0g implies a ¼ 0 or U ¼ f0g, where a∈R and U is a semigroup left ideal of R.
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(iii) AU ¼ f0g implies A ¼ f0gor U ¼ f0g, where A is a non-empty subset of R and U is
a semigroup left ideal of R.

(iv) UV ¼ f0g implies U ¼ f0g or V ¼ f0g, where U and V are semigroup left ideals
of R.

Proof. (i) implies (ii), (ii) implies (iii) and (iii) implies (iv) are clear.
To prove that (iv) implies (i), we will use the contradiction. For that purpose, suppose R is

not 3-prime. So there exist non-zero elements x; y∈R such that xRy ¼ f0g. Thus,
RxRy ¼ f0g. But Rx and Ry are semigroup left ideals of R, so Rx ¼ f0g or Ry ¼ f0g by
(iv). Hence,Rf0; xg ¼ f0gorRf0; yg ¼ f0gand either f0; xgor f0; yg is a semigroup left ideal
of R. But R is also a semigroup left ideal of R. Thus, f0; xg ¼ 0, f0; yg ¼ f0g or R ¼ f0g by
(iv), a contradiction with that x; y;R are all non-zero. So R is 3-prime and (iv) implies (i). -

For zero-symmetric near-rings, we have the following extra result.

Theorem 2.2. Let R be a zero-symmetric near-ring. Then the following statements are
equivalent:

(i) R is 3-prime.

(ii) Ua ¼ f0g implies a ¼ 0 orU ¼ f0g, where a∈R andU is a semigroup right ideal ofR.

(iii) UA ¼ f0g impliesU ¼ f0g or,A ¼ f0gwhereU is a semigroup right ideal of R and
A is a non-empty subset of R.

(iv) UV ¼ f0g implies U ¼ f0g orV ¼ f0g, where U and V are semigroup right ideals
of R.

(v) UV ¼ f0g implies U ¼ f0g orV ¼ f0g, where U is a semigroup right ideal of R and
V is a semigroup left ideal of R.

Now, we can add (5) to Remark 2.1:

(5) R is 3-prime if and only if UV ¼ f0g implies U ¼ f0g or V ¼ f0g, where U and V
are semigroup left ideals of R if and only if R is without zero-semigroup left ideal divisors.

Since any ring is a zero-symmetric near-ring, we have the following result:

Corollary 2.3. A ring is prime if and only if it is without zero-semigroup right (left) ideal
divisors.

Using the same idea, the following result gives us a result for 3-semiprime zero-symmetric
near-rings.

Theorem 2.4. Let R be a zero-symmetric near-ring. Then the following statements are
equivalent:

(i) R is 3-semiprime.

(ii) aU ¼ f0g implies a ¼ 0, where a∈U and U is a semigroup left ideal of R.

(iii) Ua ¼ f0g implies a ¼ 0, where a∈U and U is a semigroup right ideal of R.

(iv) U 2 ¼ f0g implies U ¼ f0g, where U is a semigroup left ideal of R.

(v) U 2 ¼ f0g implies U ¼ f0g, where U is a semigroup right ideal of R.

Proof. (i) implies (ii). Suppose (i) holds. Let U be a semigroup left ideal of R such that
aU ¼ f0g, where a∈U. Then for all v∈U, we have aRv ¼ f0g. Thus, aRa ¼ f0g and a ¼ 0
by (i).
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(i) implies (iii) can be proved by the same way.
(ii) implies (iv) and (iii) implies (v) are clear.
(iv) implies (v). Suppose that (iv) holds and U 2 ¼ f0g, where U is a semigroup right

ideal of R. So uRu ¼ f0g for all u∈U and hence RuRu ¼ f0g. But Ru is a semigroup left
ideal of R. So Ru ¼ f0g for all u∈U by (iv). So f0; ug is a semigroup left ideal of R and
f0; ugf0; ug ¼ f0g for all u∈U. So u ¼ 0 by (iv) and hence U ¼ f0g.

(v) implies (i). Suppose that (v) holds and that xRx ¼ f0g for some x∈R. Thus,
xRxR ¼ f0g. But xR is a semigroup right ideal of R, so xR ¼ f0g by (v). Hence,
f0; xgf0; xg ¼ f0g. But f0; xg is a semigroup right ideal of R. Thus, f0; xg ¼ f0g by (v)
and hence x ¼ 0. So R is 3-semiprime and (v) implies (i). -

Corollary 2.5. A ring R is semiprime if and only if U 2 ¼ f0g implies U ¼ f0g, where U is a
semigroup right (left) ideal of R.

But in the general case of 3-semiprime near-rings, we have only the following result.

Theorem 2.6. Let R be a near-ring. Then the following statements are equivalent:

(i) R is 3-semiprime.

(ii) aU ¼ f0g implies a ¼ 0, where a∈U and U is a semigroup left ideal of R.

(iii) U 2 ¼ f0g implies U ¼ f0g, where U is a semigroup left ideal of R.

Unfortunately, we cannot remove theword “zero-symmetric” in Theorems 2.2 and 2.4. The
following example is the near-ring in [9, Appendix, E, 22] and it shows that the condition
“zero-symmetric” in Theorems 2.2 and 2.4 is not redundant.

Example 1. Let ðR;þÞbe the Klein’s four group f0; a; b; cg. Then it is an abelian group such
that xþ x ¼ 0 for all x∈R and xþ y ¼ z for all different non-zero elements x; y; z∈R. Define
the multiplication on R as follows:

$ 0 a b c

0 0 a 0 a

a 0 a 0 a

b 0 a 0 a

c 0 a b c

ClearlyR is an abelian non-zero-symmetric near-ring. The only semigroup right ideals ofRare
R, f0; ag and f0; a; bg. So R satisfies the conditions “UV ¼ f0g impliesU ¼ f0g orV ¼ f0g,
whereU andV are semigroup right ideals ofR” and “U 2 ¼ f0g impliesU ¼ f0g, whereU is a
semigroup right ideal of R”. But R is not 3-semiprime as bRb ¼ f0g. From Theorem 2.6, we
can deduce that there is a non-zero semigroup left ideal V of R such that V 2 ¼ f0g and
υV ¼ f0g, where υ∈V − f0g. It is easy to find out that V ¼ f0; bg and v ¼ b.

From the above example, observe that
f0; a; bgb ¼ f0; a; bgfbg ¼ f0g:

So, we cannot use this example for (ii) or (iii) in Theorem 2.2 and for (iii) in Theorem 2.4. In fact,
removing “zero-symmetric” from those parts is an open problem.

Corollary 2.7. Let R be a near-ring. If r2 ≠ 0 for all r∈R− f0g, then R is 3-semiprime.

Proof. Suppose there exists a non-zero semigroup left ideal U of R such that aU ¼ f0g,
where a∈U. That means a2 ¼ 0. By hypothesis, a ¼ 0 and hence R is 3-semiprime. -

Example 2. Let R ¼ ℤ6. Then R is semiprime since r2 ≠ 0 for all r∈R− f0g.
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Example 3. Let R ¼ f0; 2; 4; 6; 8; 10; 12g the subring of ℤ14. Then R is semiprime since
r2 ≠ 0 for all r∈R− f0g.

The converse of Corollary 2.7 is not true as the following example shows.

Example 4. Let R ¼ M2ðℤ2Þ. Then R is a prime ring and hence semiprime, but�
0 1
0 0

��
0 1
0 0

�
¼

�
0 0
0 0

�
:

For commutative near-rings, we have the converse and we get the following result.

Corollary 2.8. Let R be a commutative near-ring. Then r2 ≠ 0 for all r∈R− f0g if and only if
R is 3-semiprime.

We conclude this section by the following results about the relation between 2-primeness
and 3-primeness. The fact that R is 3-prime implies R is 2-prime is well-known. The following
results have the converse.

Theorem 2.9. Let R be a zero-symmetric near-ring such that 2R ¼ f0g. Then R is 3-prime if
and only if R is 2-prime.

Proof. Suppose that xRy ¼ f0g. Thus, xRyR ¼ f0g. But xR and yR are right R-subgroups of
R. So xR ¼ f0gor yR ¼ f0g as R is 2-prime. Hence, f0; xgR ¼ f0g or f0; ygR ¼ f0g and then
either f0; xg or f0; yg is a right R-subgroup of R. But R is also a right R-subgroup of R. Thus,
f0; xg ¼ 0, f0; yg ¼ f0g or R ¼ f0g. Hence, x ¼ 0 or y ¼ 0 and R is 3-prime. -

Theorem 2.10 Any distributive near-ring R is 3-prime if and only if it is 2-prime.

Proof. Suppose that R is 2-prime and xRy ¼ f0g for some x; y∈R. So xRyR ¼ f0g and
hence xR ¼ f0g or yR ¼ f0g. So AR ¼ f0g or BR ¼ f0g, where A ¼ fnxjn∈ℤg and
B ¼ fnyjn∈ℤg. So A and B are right R-subgroups of R and hence A ¼ f0g or B ¼ f0g.
Therefore, x ¼ 0 or y ¼ 0 and R is 3-prime. -

3. K-prime near-rings
In this section, we will introduce a new kind of primeness of near-rings called K-primeness.
Firstly, we will begin with the following result.

Theorem 3.1. Let R be a ring. Then the following statements are equivalent:

(i) R is prime.

(ii) for any 0≠ a; x; y∈R, xsa ¼ yra for all s; r∈R− f0g implies x ¼ y.

Proof. A ring R is prime if and only if it is equiprime, so we will use the definition of
equiprimeness, i.e. for any 0≠ a; x; y∈R, xca ¼ yca for all c∈R implies x ¼ y.

(i) implies (ii) is clear.
(ii) implies (i). Suppose (ii) holds. If for all c∈R, xca ¼ yca for 0≠ a; x; y∈R, then

ðx− yÞca ¼ 0 ¼ 0ra for all c; r∈R. So x ¼ y by (ii). -
Part (ii) enhances the following definition for near-rings.

Definition 3.1. Let R be a near-ring. We say that R is K-prime if, for any 0≠ a; x; y∈R,
xsa ¼ yra for all s; r∈R− f0g implies x ¼ y.

As we mentioned before for rings, a ring is prime if and only if it is equiprime. So we have
the following result.

Corollary 3.2. A ring R is prime if and only if it is K-prime.
The following result shows that every K-prime near-ring is zero-symmetric 3-prime.

Theorem 3.3. Let R be a K-prime near-ring. Then R is zero-symmetric 3-prime.
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Proof. Firstly, we will show thatR is zero-symmetric. IfR is not zero-symmetric, then it has
at least one non-zero constant element c (see [8, Theorem 1.15). For different elements x; yofR,
we have that xsc ¼ yrc ¼ c for all s; r∈R− f0g, a contradiction with the hypothesis. So R is
zero-symmetric. Now, suppose xRy ¼ f0g for some x; y∈R. So xcy ¼ 0 for all c∈R. If y≠ 0,
then xcy ¼ 0ry for all c; r∈R. So x ¼ 0 from the hypothesis and hence R is 3-prime. -

In the case of near-rings, we have only that e-primeness implies K-primeness as shown
in the proof of Theorem 3.1 (since an e-prime near-ring is zero-symmetric [10]). But the
converse is not true as we will show in the next example. We will use the near-ring
mentioned in [9, Appendix, F, 7] in the next example.

Example 5. Let ðR;þÞ be the cyclic group ℤ5 and define the multiplication on R as follows:

$ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 4 3 2 1
3 0 1 2 3 4
4 0 4 3 2 1

So R is an abelian near-ring which is not a ring (as ð1þ 1Þ2 ¼ 3≠ 4 ¼ 2þ 2 ¼ ð1Þ2þ ð1Þ2).
Clearly that R is without zero divisors. Hence, R is 3-prime. R is not equiprime. Indeed,
1c1 ¼ 3c1 ¼ c1 for all c∈R. But if 0≠ a; x; y∈R such that xsa ¼ yra for all s; r∈R− f0g, then
x ¼ y. Clearly that is true if x or y is equal to zero, since R is without zero divisors. That is the only
possible case. In fact, if xsa ¼ yra for all s; r∈R− f0g and x; y; a are all non-zero, then from the
table we can choose so; ro ∈R− f0g to satisfy that xso ¼ 1 and yro ¼ 2. Hence, a ¼ 2a which
implies that a ¼ 0 (from the table), a contradiction with 0≠ a. Therefore, K-primeness does not
imply e-primeness.

Also, we can find zero-symmetric 3-prime near-rings which are not K-prime, as the
following example shows.

Example 6. LetRbe a trivial zero-symmetric near-ring of order greater than 2. ClearlyR is 3-
prime. Taking two non-zero elements x and y such that x≠ y, we have xsx ¼ yrx ¼ x for all
s; r∈R− f0g. So R is not K-prime.

Theorem 3.1, Theorem 3.3 and the examples after them show that K-primeness is a new
kind of primeness.

Observe that K-primeness lies between 3-primeness and e-primeness (equiprimeness). So
we have the following chain of primeness in the class of zero-symmetric near-rings:

The class of e-prime near-rings
⊆ The class of K-prime near-rings
⊆ The class of 3-prime near-rings
⊆ The class of 2-prime near-rings
⊆ The class of 1-prime near-rings
⊆ The class of 0-prime near-rings

Remark 3.1. Observe that:
(i) It is well-known thatMoðGÞ is e-prime (see [10]) and hence K-prime. Observe that it has

zero divisors.
(ii) SinceMðGÞ is not zero-symmetric, so it is not K-prime (and hence not e-prime), but it

has zero divisors.
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(iii) Let N be any near-field. Then N is e-prime and hence K-prime. Indeed, for any
0≠ a; x; y∈R such that xca ¼ yca for all c∈R, we have that x ¼ y by choosing c ¼ a−1.
Observe that N is without zero divisors.

(iv) Example 6 shows a 3-prime near-ring without zero divisors which is not K-prime
(and hence not e-prime).

From the above parts in Remark 3.1, there is no relation between e-primeness (K-
primeness) and the existence of zero divisors in near-rings. So, we have another chain of the
primeness in the class of zero-symmetric near-rings:

The class of completely prime near-rings
⊆ The class of 3-prime near-rings
⊆ The class of 2-prime near-rings
⊆ The class of 1-prime near-rings
⊆ The class of 0-prime near-rings

4. On prime ideals
The next definition introduces K-prime ideals.

Definition 4.1. LetRbe a near-ring and P an ideal ofR. Then P is a K-prime ideal ofR if for
every a∈R−P and x; y∈R, xra− ysa∈P for all r; s∈R−P implies x− y∈P.

Clearly R is K-prime if and only if f0g is a K-prime ideal of R.
The relationship between K-prime ideals and other kinds of prime ideals is stated in the

following result.

Theorem 4.1. Let R be a near-ring with an ideal P.

(i) If P is a K-prime ideal of R, then P is a 3-prime ideal of R.

(ii) If P is an e-prime ideal of R, then P is a K-prime ideal of R.

Proof. (i) Firstly, we will show that P contains all the constant elements of R. Let c be a
constant element in R. If c∈R−P, then

xrc� ysc ¼ c� c ¼ 0∈P

for all x; y∈R and r; s∈R−P. So x− y∈P and hence x− 0 ¼ x∈P for all x∈R. Thus,
P ¼ R, a contradiction with c∉P. So c∈P.

Now, suppose aRb⊆P for some a; b∈R and b∉P. From above, any element s∈R−P is a
zero-symmetric element. So 0sb ¼ 0∈P for all s∈R−P. So arb− 0sb∈P for all r; s∈R−P.
Thus, a∈P by the hypothesis and P is 3-prime.

(ii) Firstly, observe that if r∈P and s∈R is a zero-symmetric element, then

rs ¼ ðr þ 0Þs� 0s∈P:

Suppose xra− ysa∈P for all r; s∈R−P, where a∈R−P and x; y∈R. So xca− yca∈P for
all c∈R−P. Now, suppose c∈P. As a∉P, we have that a is a zero-symmetric element (see [10]).
So ca∈P and hence xca− yca∈P. ButP is e-prime. So x− y∈P andP is a K-prime ideal ofR.-

The next result generalizes Theorem 2.1 for 3-prime ideals.

Theorem 4.2. Let R be a near-ring and P an ideal of R. Then the following statements are
equivalent:

(i) P is a 3-prime ideal of R.
(ii) BU ⊆P implies B⊆P or U ⊆P, where B is a non-empty subset of R and U is a

semigroup left ideal of R.
(iii) UV ⊆P implies U ⊆P or V ⊆P, where U and V are semigroup left ideals of R.
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Proof. (i) implies (ii). Suppose (i) holds. LetU be a semigroup left ideal of R and B be a non-
empty subset of R such that BU ⊆P. If B?P, then there exists b∈B−P such that bRu⊆P
for all u∈U. Thus, U ⊆P by (i).

(ii) implies (iii) is clear.
(iii) implies (i). To prove it, we will use the contradiction. Suppose that (iii) holds and P is

not a 3-prime ideal. So there exist x; y R−P such that xRy⊆P. Thus, RxRy⊆P. So Rx⊆P or
Ry⊆P by (iii). Hence, RðP ∪ fxgÞ⊆P or RðP ∪ fygÞ⊆P and then P ∪ fxg or P ∪ fyg is a
semigroup left ideal of R. But R itself is also a semigroup left ideal of R. Thus, P ∪ fxg⊆P,
P ∪ fyg⊆P or R⊆P by (iii), a contradiction with that x; y∈R−P. So P is 3-prime and (iii)
implies (i). -

Remark4.1. FromTheorem 4.2, a new characterization of 3-prime ideals can be written as
follows:

(*) P is a 3-prime ideal of R if for every two semigroup left ideals A and B of R, AB⊆P
implies A⊆P or B⊆P.

Using Theorem 4.2 and its proof, we can prove the following result which generalizes
Theorem 2.2 for 3-prime ideals.

Theorem 4.3. Let R be a zero-symmetric near-ring and P an ideal of R. Then the following
statements are equivalent:

(i) P is a 3-prime ideal of R.

(ii) UB⊆P implies U ⊆P or B⊆P, where U is a semigroup right ideal of R and B is a
non-empty subset of R.

(iii) UV ⊆P implies U ⊆P or V ⊆P, where U and V are semigroup right ideals of R.

We cannot eliminate the condition “zero-symmetric” in Theorem 4.3 as the following
example shows:

Example 7. Observe that f0g is not a 3-prime ideal in Example 1 although it satisfies the
condition “If UV ⊆ f0g, then U ⊆ f0g or V ⊆ f0g, where U and V are semigroup right ideals
of R”. This shows that “zero-symmetric” in Theorem 4.3 is not redundant.

Now, we would like to generalize Definition 2.1.

Definition 4.2. Let R be a near-ring with an ideal I.

(i) Let A be a non-empty subset of R. We say that A is a left I set-attractor (a right I
set-attractor) ofR if there exists a non-empty subsetB ofR andB? I such thatAB⊆ I (BA⊆ I).
We say that A is an I set-attractor of R if A is a left or a right I set-attractor of R.

(ii) LetAbe an ideal of R. We say thatA is a left I ideal-attractor (a right I ideal-attractor)
of R if there exists an ideal B of R and B? I such that AB⊆ I (BA⊆ I). We say that A is an I
ideal-attractor of R if A is a left or a right I ideal-attractor of R.

We can do the same definitions if A is a left (right) ideal of R, a left (right, two-sided)
R-subgroup of R, a semigroup ideal of R or a semigroup left (right) ideal of R.

Example 8. Let R be a near-ring with an ideal I ≠R. Any non-empty subset of I is a right I
set-attractor of R and hence an I set-attractor of R. In particular, I is an I set-attractor of R.
Also, if there exist an ideal (a left (right) ideal, a left R-subgroup, a semigroup left ideal) B of R
such that B? I, then I is an I ideal-attractor (I left (right) ideal-attractor, I left R-subgroup-
attractor, I semigroup left ideal-attractor) of R.

Definition 4.3. Let R be a near-ring with an ideal P. If A is a P set-attractor (P ideal-
attractor, etc.) ofR, then we say thatA is an internal P set-attractor (P ideal-attractor, etc.) ofR
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ifA⊆P. IfA?P, then we say thatA is an external P set-attractor (P ideal-attractor, etc.) ofR.
If R does not have any external P set-attractors (P ideal-attractors, etc.), then we say that R is
without external P set-attractors (P ideal-attractors, etc.), i.e. for a P set-attractor (P ideal-
attractor, etc.) A of R, we have that A⊆P

Example 9. (i) Any near-ring R is without external (or internal) R-set attractors.
(ii) Any near-ring without zero divisors is without external f0g-set attractors.
(iii) Let R be the ring ℤ4. Take P to be the ideal f0; 2g. Then R is without external P

set-attractors.
(iv) Let R be the ring ℤ6. Take P to be the ideal f0g. Then f2g, f3g and f4g are external P

set-attractors and f0g is an internal P set-attractor.

Theorem 4.4. Let R be a near-ring with an ideal P. Then the following statements are
equivalent:

(i) R is without external P set-attractors.

(ii) P is a completely prime ideal of R.

Proof. (i) implies (ii), Suppose (i) holds and ab∈P for some a; b∈R. So fagfbg⊆P. If a∉P,
then b∈P by (i) and P is completely prime.

(ii) implies (i). Suppose (ii) holds andA is a P set-attractor of R. So there exists a non-empty
subset B of R and B?P such that AB⊆P or BA⊆P. Suppose the case is AB⊆P. Take
y∈B−P. So xy∈P for all x∈A and then A⊆P by (ii). By the same way we can do for the
other case. So R is without external P set-attractors. -

Remark 4.2. (i) If I ¼ f0g in Definition 4.2, then we have Definition 2.1.
(ii) From the above two definitions, Theorem 4.2 and 4.4, we can rewrite the statements of

different kinds of prime ideals as follows:
Let R be a near-ring with an ideal P. Then

(1) P is completely prime if and only ifR is without external P set-attractors if and only if
for every two non-empty subsets A and B of R, AB⊆P implies A⊆P or B⊆P.

(2) P is 0-prime if and only if R is without external P ideal-attractors.

(3) R is 1-prime if and only if R is without external P right ideal-attractors.

(4) R is 2-prime if and only if R is without external P right R-subgroup-attractors.

(5) R is 3-prime if and only if R is without external P semigroup left ideal-attractors.
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