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Abstract

In this paper, we study the different kinds of the primeness on the class of near-rings and we give new .

characterizations for them. For that purpose, we introduce new concepts called set-divisors, ideal-divisors, etc. RRe‘?EWEd 11 October 2019
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and we give equivalent statements for 3-primeness which make 3-primeness looks like the forms of the other 5 cpted 16 December 2019

kinds of primeness. Also, we introduce a new different kind of primeness in near-rings called K-primeness

which lies between 3-primeness and e-primeness. After that, we study different kinds of prime ideals in near-

rings and find a connection between them and new concepts called set-attractors, ideal-attractors, etc. to make

new characterizations for them. Also, we introduce a new different kind of prime ideals in near-rings called

K-prime ideals.
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1. Introduction

We say that R is a right (left) near-ring if (R, +) is a group, (R, -) is a semigroup and R
satisfies the right (left) distributive law. Throughout this paper, R will be a left near-ring. We
say that R is an abelian near-ring if x +y =y + x for all x,y € R and we say that R is a
commutative near-ring if xy = yx for all x,y €R. A zero-symmetric element is an element
x € R satisfying Ox = 0. A near-ring R is called a zero-symmetric near-ring, if Ox = 0 for all
x € R. A constant element is an element y € R satisfying zy = yfor allz € R. An element x € R
is called a right (left) zero divisor in R if there exists a non-zero element y € R such that yx = 0
(xy = 0). A zero divisor is either a right or a left zero divisor. By a near-ring without zero
divisors, we mean a near-ring without non-zero divisors of zero. If A and Bare two non-empty
subsets of R, then the product AB means the set {abla € A,b € B}. We say that U is a right
(left) R-subgroup of R, if U is a subgroup of (R, +) satisfies UR C U (RU c U). We say that U
is a two-sided R-subgroup of R, if U is both a right and a left R-subgroup of R. We say that / is
a right (left) ideal of R, if [ is a normal subgroup of (R, +) satisfies (7 +¢)s — s €/ for all
1€l,r,seR(RI CI). Wesay that [ is an ideal of R if it is both a right and a left ideal of R. We
say that U is a semigroup right (left) ideal of R, if U is a non-empty subset of R satisfies
UR C U (RU c U). We say that U is a semigroup ideal of R if it is both a semigroup right and
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left ideal of R (some authors call U a right (left, two-sided) R-subset of R [8]). For any group
(G,+), M(G) denotes the near-ring of all maps from G to G with the two operations of
addition and composition of maps. M,(G) is the zero-symmetric subnear-ring of M(G)
consisting of all zero preserving maps from G to itself (and to make them left near-rings we
should write f (g) by gf, where f € M (G) or M, (G) and g € G). A trivial zero-symmetric near-
ring R is a zero-symmetric near-ring such that the multiplication on the group (R, +) is
defined by xy = yand Oy = Ofor all x € R — {0}, y € R. A near-field N is a near-ring in which
(N —={0}, -) is a group. For further information about near-rings, see [8] and [9].

In near-rings, there are five well-known kinds of primeness. We say that: R is O-prime (the
usual primeness) if, for every twoideals /and J of R, [] = {0} implies/ = {0} orJ = {0}, Ris
1-prime if, for every two right ideals K and L of R, KL = {0} implies K = {0} or L = {0}.Ris
2-prime if, for every two right R-subgroups A and B of R, AB = {0} implies A = {0} or
B = {0}. Ris 3-prime if, for all x,y € R, xRy = {0} implies x = Oor y = O and R is equiprime
(e-prime) if, for any 0#a, x,y € R, xca = yca for all ¢ € R implies x = y. These five kinds of
primeness are equivalent in the class of rings. But in the class of near-rings, we have: (1) R
is equiprime implies that R is zero-symmetric 3-prime, (2) R is 3-prime implies that R is
2-prime, (3) R is zero-symmetric 2-prime implies that R is 1-prime and (4) R is 1-prime implies
that R is O-prime. For details about these kinds and their examples and relationships see
[1-3,5-7] and [10]. A near-ring (a ring) R is called 3-semiprime (semiprime) if, for all x € R,
xRy = {0} implies x = 0. Anideal Pof Ris: (i) a O-prime ideal of R if for every two ideals A and
Bof R, AB C Pimplies that A € Por B C P, (ii) a 1-prime ideal of R if for every two right ideals
Aand Bof R, AB C Pimplies that A C Por B C P, (iii) a 2-prime ideal of R if for every two right
R-subgroups A and B of R, AB C P implies that A C P or BC P, (iv) a 3-prime ideal of R if for
a,b € R, aRb C P implies that « € P or b € P, (v) an e-prime (equiprime) ideal of R if for every
a€eR—Pandx,y€R, xca—yca € Pfor all c € Rimplies that x — y € P. Clearly that any near-
ring is a v-prime ideal of itself, where v € {0, 1,2, 3, ¢}. It is well-known that (ii) implies (i) and
(iv) implies (iii). Also, for zero-symmetric near-rings we have (iii) implies (ii). An ideal 7 of R is
called completely prime if, for a,b € R, ab €I implies that a €1 or b €l. If the zero ideal is
completely prime, then we say that R is completely prime. Then R is completely prime if and
only if R is without zero divisors. For more details about prime ideals, see [2,4,5] and [10].

In [1], the authors gave us a short historical view about the primeness of near-rings. We
will use it and add some information to it.

Several different generalizations of primeness for rings have been introduced for near-
rings. In[6], Holcombe studied three different concepts of primeness, which he called 0-prime,
1-prime and 2-prime. In [5], Groenewald obtained further results for these and introduced
further notion which he called 3-primeness. In [2], Booth, Groenewald and Veldsman gave
another definition, called equiprimeness, or e-primeness. In [10], Veldsman made more studies
on equiprime near-rings. In[1], Booth and Groenewald gave an element-wise characterization
of the radical associated with v -primeness for v= 1,2, 3, e.

In this paper we extend the idea of primeness that they did and give some new results for
the primeness of near-rings. Firstly, we introduce new concepts called set-divisors, ideal
divisors, etc. These concepts are generalizations of the concept of zero divisors and give
another characterization of different kinds of the primeness in near-rings and hence in rings.
Also, we study the 3-primeness and give new characterizations of 3-prime (3-semiprime) near-
rings and hence for prime (semiprime) rings. These characterizations make 3-primeness looks
like the forms of the other kinds of primeness. In fact, we show that a near-ring (a ring) is
3-prime (prime) if and only if UV = {0} implies U = {0} or V = {0}, where U and V are
semigroup left ideals of R. Hence, a ring is prime if and only if it is without zero-semigroup
right (left) ideal divisors. A similar result is made for 3-semiprime near-rings (semiprime
rings) and we conclude that: for a nearring R, if 72#0 for all »€R—{0}, then R is
3-semiprime. We show that some kinds of near-rings are 3-prime if and only if they are



2-prime. Also, we introduce a new kind of primeness in near-rings (the sixth one) called
K-primeness and we show that it is totally different from the other kinds of primeness and it
lies between 3-primeness and e-primeness. Depending on that, we give two chains of
primeness in the class of zero-symmetric near-rings for comparison. In the last part of the
paper, we study different kinds of prime ideals. We introduce a new kind of prime ideals
called K-prime ideals and we show that they are different from the other kinds of prime ideals.
they lie between 3-prime ideal and e-prime ideals. Also, we give a new characterization of
3-prime ideals and show that Pis a 3-prime ideal of R if and only if UV C P implies U C P or
V C P, where U and V are semigroup left ideals of R. We introduce new concepts called
set-attractors, ideal-attractors, etc. which are generalizations of the new concepts above
(set-divisors, etc.). We make a connection between these concepts and different kinds of prime
ideals in near-rings to give a new characterization of these prime ideals. Finally, we use these
concepts to show that: Pis a completely prime ideal of R if and only if R is without external P
set-attractors.

2. On prime near-rings

Let R be a near-ring. It is clear that R is without zero divisors if and only if AB = {0} implies
A = {0} or B = {0}, where A and B are non-empty subsets of R. This observation gives us a
hint of a new definition.

Definition 2.1. Let R be a non-zero near-ring.

(1) Let Abeanon-empty subset of R. We say that A is a left zero-set divisor (a right zero-
set divisor) of R if there exists a non-empty non-zero subset B of R such that AB = {0}
(BA = {0}). We say that A is a zero-set divisor of Rif A is a left or a right zero-set divisor of R.

(2) Let A be an ideal of R. We say that A is a left zero-ideal divisor (a right zero-ideal
divisor) of R if there exists a non-zero ideal B of R such that AB = {0} (BA = {0}). We say
that A is a zero-ideal divisor of R if A is a left or a right zero-ideal divisor of R.

We can do same definitions if A is a left (right) ideal, a left (right) R -subgroup, a two-sided
R-subgroup, a semigroup left (right) ideal or a semigroup ideal.

Definition 2.1 generalizes the concept of zero divisors in rings and near-rings. So, we have
the following remark.

Remark 2.1. From Definition 2.1, we can rewrite the definitions of different kinds of the
primeness as follows:
Let R be a near-ring. Then

(1) R is completely prime if and only if R is without zero divisors if and only if R is
without zero-set divisors.

(2) Ris 0-prime if and only if R is without zero-ideal divisors.
(3) Ris 1-prime if and only if R is without zero-right ideal divisors.
(4) Ris 2-prime if and only if R is without zero-right R-subgroup divisors.

Remark 2.1 enhances a question: Can we get a definition of 3-primeness like that mentioned in
Remark 2.1? The following result answers this question.

Theorem 2.1. Let R be a near-ving. Then the following statements are equivalent:
(1) Ris 3-prime.
(@) aU = {0} impliesa = 0or U = {0}, where a € Rand U is a semigroup left ideal of R
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() AU = {0}implies A = {0} or U = {0}, where Ais a non-empty subset of R and U is
a semigroup left ideal of R.

() UV = {0} implies U = {0} or V = {0}, where U and V are semigroup left ideals
of R.

Proof. (i) implies (ii), (i) implies (iii) and (iii) implies (iv) are clear.

To prove that (iv) implies (i), we will use the contradiction. For that purpose, suppose R is
not 3-prime. So there exist non-zero elements x,y€R such that xRy = {0}. Thus,
RxRy = {0}. But Rx and Ry are semigroup left ideals of R, so Rx = {0} or Ry = {0} by
(iv). Hence, R{0,x} = {0} or R{0,y} = {0} and either {0, x} or {0, y} is a semigroup left ideal
of R. But R is also a semigroup left ideal of R. Thus, {0,x} =0, {0,y} = {0} or R = {0} by
(iv), a contradiction with that x, v, R are all non-zero. So R is 3-prime and (iv) implies (). W

For zero-symmetric near-rings, we have the following extra result.

Theorem 2.2. Let R be a zero-symmetric near-ring. Then the following statements are
equivalent:

(1) Ris 3-prime.

(i) Ua = {0} impliesa = Oor U = {0}, where a € Rand U is a semigroup right ideal of R.

() UA = {0} implies U = {0} or, A = {0} where U is a semigroup right ideal of Rand
A is a non-empty subset of R.

(i) UV = {0} implies U = {0} orV = {0}, where U and V are semigroup right ideals
of R.

() UV = {0} implies U = {0} orV = {0}, where U is a semigroup right ideal of R and
V is a semigroup left ideal of R.

Now, we can add (5) to Remark 2.1:

(6) Ris 3-prime if and only if UV = {0} implies U = {0} or V = {0}, where U and V
are semigroup left ideals of R if and only if R is without zero-semigroup left ideal divisors.

Since any ring is a zero-symmetric near-ring, we have the following result:

Corollary 2.3. A ring is prime if and only if it is without zero-semigroup right (left) ideal
divisors.

Using the same idea, the following result gives us a result for 3-semiprime zero-symmetric
near-rings.

Theorem 2.4. Let R be a zero-symmetric near-ring. Then the following statements are
equivalent.

() Ris 3-semiprime.

(i) aU = {0} implies a = 0, where a € U and U is a semugroup left ideal of R.
(i) Ua = {0} implies a = 0, where a € U and U is a semigroup right ideal of R.
() U? = {0} implies U = {0}, where U is a semigroup left ideal of R.

W) U? = {0} implies U = {0}, where U is a semigroup right ideal of R.

Proof. (i) implies (ii). Suppose (i) holds. Let U be a semigroup left ideal of R such that
aU = {0}, where a € U. Then for allv € U, we have aRv = {0}. Thus, aRa = {0} anda = 0

by ().



(1) implies (i) can be proved by the same way.

(i) implies (iv) and (ii1) implies (v) are clear.

(iv) implies (v). Suppose that (iv) holds and U? = {0}, where U is a semigroup right
ideal of R. So uRu = {0} for all « € U and hence RuRu = {0}. But Ru is a semigroup left
ideal of R. So Ru = {0} for all u € U by (iv). So {0, «} is a semigroup left ideal of R and
{0,u}{0,u} = {0} for all u € U. So u = 0 by (iv) and hence U = {0}.

(v) implies (i). Suppose that (v) holds and that xRx = {0} for some x€R. Thus,
xRxR = {0}. But xR is a semigroup right ideal of R, so xR = {0} by (v). Hence,
{0,x}{0,x} = {0}. But {0,x} is a semigroup right ideal of R. Thus, {0,x} = {0} by (v)
and hence x = 0. So R is 3-semiprime and (v) implies (i). Il

Corollary 2.5. A ring R is semiprime if and only if U?> = {0} implies U = {0}, where U is a
semigroup vight (left) ideal of R.
But in the general case of 3-semiprime near-rings, we have only the following result.

Theorem 2.6. Let R be a near-ring. Then the following statements are equivalent:
(1) Ris 3-semiprime.
(i) aU = {0} implies a = 0, where a € U and U s a semigroup left ideal of R.
@) U? = {0} implies U = {0}, where U is a semigroup left ideal of R.

Unfortunately, we cannot remove the word “zero-symmetric” in Theorems 2.2 and 2.4. The
following example is the near-ring in [9, Appendix, E, 22] and it shows that the condition
“zero-symmetric” in Theorems 2.2 and 2.4 is not redundant.

Example 1. Let (R, +) be the Klein’s four group {0, a, b, c}. Then it is an abelian group such
that x + x = Ofor all x € Rand x + y = zfor all different non-zero elements x, y, z € R. Define
the multiplication on R as follows:

0 a b ¢
0 0 a 0 a
a 0 a 0 a
b 0 a 0 a
c 0 a b ¢

Clearly Ris an abelian non-zero-symmetric near-ring. The only semigroup right ideals of Rare
R, {0,a}and {0, a, b}. So R satisfies the conditions “UV = {0} implies U = {0} or V' = {0},
where U and V are semigroup right ideals of R” and “U? = {0} implies U = {0}, where Uisa
semigroup right ideal of R”. But R is not 3-semiprime as bRb = {0}. From Theorem 2.6, we
can deduce that there is a non-zero semigroup left ideal V of R such that V2 = {0} and
oV = {0}, where v € V — {0}. It is easy to find out that V' = {0,b} and v = b.
From the above example, observe that
{0,a,b}b = {0,a,b}{b} = {0}.

So, we cannot use this example for (ii) or (iii) in Theorem 2.2 and for (iii) in Theorem 2.4. In fact,
removing “zero-symmetric” from those parts is an open problem.
Corollary 2.7. Let R be a near-ring. If ¥* #0 for all r € R — {0}, then R is 3-semiprime.

Proof. Suppose there exists a non-zero semigroup left ideal U of R such that aU = {0},
where a € U. That means ¢ = 0. By hypothesis, ¢ = 0 and hence R is 3-semiprime. ll

Example 2. Let R = Zg. Then R is semiprime since 72 #0 for all » € R — {0}.
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Example 3. Let R = {0,2,4,6,8,10,12} the subring of Z14. Then R is semiprime since
r*#0 for all » € R — {0}.
The converse of Corollary 2.7 is not true as the following example shows.

Example 4. Let R = M»(Zy). Then R is a prime ring and hence semiprime, but

0 1][0 1] [0 0
0 0|0 O |0 OF
For commutative near-rings, we have the converse and we get the following result.

Corollary 2.8. Let R be a commutative near-ring. Then r* # 0 for ally € R — {0} if and only if
R is 3-semiprime.

We conclude this section by the following results about the relation between 2-primeness
and 3-primeness. The fact that R is 3-prime implies R is 2-prime is well-known. The following
results have the converse.

Theorem 2.9. Let R be a zero-symmelric near-ring such that 2R = {0}. Then Ris 3-prime if
and only if R is 2-prime.

Proof. Suppose that xRy = {0}. Thus, xRyR = {0}. But xR and yR are right R-subgroups of
R.SoxR = {0}oryR = {0} as Ris 2-prime. Hence, {0, x}R = {0} or {0, y}R = {0} and then
either {0, x} or {0,y} is a right R-subgroup of R. But R is also a right R-subgroup of K. Thus,
{0,x} =0,{0,y} = {0} or R = {0}. Hence, x = 0 or y = 0O and R is 3-prime. W

Theorem 2.10 Any distributive near-ring R is 3-prime if and only if it is 2-prime.

Proof. Suppose that R is 2-prime and xRy = {0} for some x,y € R. So xRyR = {0} and
hence ¥R = {0} or yR = {0}. So AR = {0} or BR = {0}, where A = {nxjne€Z} and
B ={nyjneZ}. So A and B are right R-subgroups of R and hence A = {0} or B = {0}.
Therefore, x = 0or y = 0 and R is 3-prime. W

3. K-prime near-rings
In this section, we will introduce a new kind of primeness of near-rings called K-primeness.
Firstly, we will begin with the following result.

Theorem 3.1. Let R be a ring. Then the following statements are equivalent:
(1) Ris prime.
(i) foranyO+#a,x,y€E€R, xsa = yra for all s,r € R — {0} implies x = y.

Proof. A ring R is prime if and only if it is equiprime, so we will use the definition of
equiprimeness, i.e. for any 0 #a, x,v € R, xca = yca for all c € R implies x = y.

(1) implies (ii) is clear.

(i) implies (i). Suppose (i) holds. If for all ceR, xca = yca for 0#a,x,y €R, then
(x=y)ca=0=0raforallc,r €R. So x = yby (ii). H

Part (i1) enhances the following definition for near-rings.

Definition 3.1. Let R be a near-ring. We say that R is K-prime if, for any 0#a,x,y €R,
xsa = yrafor all s, € R — {0} implies x = .

As we mentioned before for rings, a ring is prime if and only if it is equiprime. So we have
the following result.

Corollary 3.2. A ring R is prime if and only if it is K-prime.
The following result shows that every K-prime near-ring is zero-symmetric 3-prime.

Theorem 3.3. Let R be a K-prime near-ring. Then R is zero-symmetric 3-prime.



Proof. Firstly, we will show that Ris zero-symmetric. If R is not zero-symmetric, then it has
at least one non-zero constant element ¢ (see [8, Theorem 1.15). For different elements x, y of R,
we have that xsc = yrc = cfor all s,7 € R — {0}, a contradiction with the hypothesis. So R is
zero-symmetric. Now, suppose xRy = {0} for some x,y € R. So x¢cy = Ofor all ce R. If y #0,
then xcy = Ory for all ¢, » € R. So x = 0 from the hypothesis and hence R is 3-prime. l

In the case of near-rings, we have only that e-primeness implies K-primeness as shown
in the proof of Theorem 3.1 (since an e-prime near-ring is zero-symmetric [10]). But the
converse is not true as we will show in the next example. We will use the near-ring
mentioned in [9, Appendix, F, 7] in the next example.

Example 5. Let (R, +) be the cyclic group 75 and define the multiplication on R as follows:

01 2 3 4
0 00000
1 01 2 3 4
2 0 4 3 21
3 012 3 4
4 0 4 3 21

So R is an abelian nearring which isnot aring (@as (1+1)2=3#4=2+2=(1)2+ (1)2.
Clearly that R is without zero divisors. Hence, R is 3-prime. R is not equiprime. Indeed,
1cl = 3cl = clforallce R. Butif 0 #a, x,y € R such that xsa = yrafor alls,» € R — {0}, then
x =. Clearly that is true if x or y is equal to zero, since R is without zero divisors. That is the only
possible case. In fact, if xsa = yra for all s, € R — {0} and x, v, a are all non-zero, then from the
table we can choose s,,7, € R — {0} to satisfy that xs, = 1 and y7, = 2. Hence, @ = 2a which
implies that ¢ = 0 (from the table), a contradiction with 0 # a. Therefore, K-primeness does not
imply e-primeness.

Also, we can find zero-symmetric 3-prime near-rings which are not K-prime, as the
following example shows.

Example 6. Let Rbe a trivial zero-symmetric near-ring of order greater than 2. Clearly Ris 3-
prime. Taking two non-zero elements x and y such that x #y, we have xsx = yrx = x for all
s,7€R—{0}. So R is not K-prime.

Theorem 3.1, Theorem 3.3 and the examples after them show that K-primeness is a new
kind of primeness.

Observe that K-primeness lies between 3-primeness and e-primeness (equiprimeness). So
we have the following chain of primeness in the class of zero-symmetric near-rings:

The class of e-prime near-rings
C The class of K-prime near-rings
C Theclass of 3-prime near-rings
C The class of 2-prime near-rings
C The class of 1-prime near-rings
C The class of 0-prime near-rings

Remark 3.1. Observe that:

(i) Itis well-known that M, (G) is e-prime (see [10]) and hence K-prime. Observe that it has
zero divisors.

(i) Since M(G) is not zero-symmetric, so it is not K-prime (and hence not e-prime), but it
has zero divisors.
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(i) Let N be any near-field. Then N is e-prime and hence K-prime. Indeed, for any
0+#£a,x,y €R such that xca = yca for all c € R, we have that x =y by choosing ¢ = a™ L.
Observe that N is without zero divisors.

(iv) Example 6 shows a 3-prime near-ring without zero divisors which is not K-prime

(and hence not e-prime).

From the above parts in Remark 3.1, there is no relation between e-primeness (K-
primeness) and the existence of zero divisors in near-rings. So, we have another chain of the
primeness in the class of zero-symmetric near-rings:

The class of completely prime near-rings
C The class of 3-prime near-rings
C The class of 2-prime near-rings
C The class of 1-prime near-rings
C The class of 0-prime near-rings

4. On prime ideals
The next definition introduces K-prime ideals.

Definition4.1. Let Rbea near-ring and Pan ideal of R. Then Pis a K-prime ideal of Rif for
everya€R—Pand x,y€R, xra—ysa€ P for all7,s€ R — Pimplies x —y € P.

Clearly R is K-prime if and only if {0} is a K-prime ideal of R.

The relationship between K-prime ideals and other kinds of prime ideals is stated in the
following result.

Theorem 4.1. Let R be a near-ring with an ideal P.
(i) If Pis a K-prime ideal of R, then P is a 3-prime ideal of R.
(1) If Pis an e-prime ideal of R, then P is a K-prime ideal of R

Proof. (i) Firstly, we will show that P contains all the constant elements of R. Let ¢ be a
constant element in R. If c€ R — P, then

xrc—ysc=c—c=0eP

for all x,yeR and »,seR—P. So x—y € P and hence x—0 = x€ P for all x€R. Thus,
P = R, a contradiction with ¢ & P. So c € P.

Now, suppose aRb C Pfor some a, b € Rand b ¢ P. From above, any elements e R — P isa
zero-symmetric element. So 0sb = 0 Pforallse R—P.So arb—0sb € Pforall»,se R — P.
Thus, a € P by the hypothesis and P is 3-prime.

(i) Firstly, observe that if » € P and s € R is a zero-symmetric element, then

rs=(r+0)s—0seP.

Suppose x7a — ysa € Pfor all7,s € R — P, wherea € R — Pand x, y € R. So xca — yca € P for

all c € R — P.Now, suppose ¢ € P. As a & P, we have that a is a zero-symmetric element (see [10]).

So ca € Pand hence xca — yca € P.But Pis eprime. So x — y € Pand Pis a K-prime ideal of K.
The next result generalizes Theorem 2.1 for 3-prime ideals.

Theorem 4.2. Let R be a near-ring and P an ideal of R. Then the following statements are
equivalent:

() Pis a 3-prime ideal of R.

(1) BU CP implies BCP or UCP, where B is a non-empty subset of R and U is a
semigroup left ideal of R.

(iy) UV CPimplies UCPor VCP, where U and V are semigroup left ideals of R.



Proof. (i) implies (ii). Suppose (i) holds. Let U be a semigroup left ideal of R and Bbe a non-
empty subset of R such that BU C P. If B & P, then there exists b € B — P such that bRu C P
for allu e U. Thus, U C P by (i).

(i1) implies (iii) is clear.

(ii1) implies (i). To prove it, we will use the contradiction. Suppose that (iii) holds and P is
not a 3-prime ideal. So there exist x,y R — P such that xRy C P. Thus, RxRy C P. So Rx C Por
Ry C P by (iii). Hence, R(PU{x}) CP or R(PU{y})CP and then PU{x} or PU{y} is a
semigroup left ideal of R. But R itself is also a semigroup left ideal of R. Thus, Pu {x} CP,
Pu{y} CPor RCP by (iii), a contradiction with that x,y € R — P. So P is 3-prime and (iii)
implies (i). W

Remark 4.1. From Theorem 4.2, a new characterization of 3-prime ideals can be written as
follows:

(*) P is a 3-prime ideal of R if for every two semigroup left ideals A and B of R, ABCP
implies ACPor BCP.

Using Theorem 4.2 and its proof, we can prove the following result which generalizes
Theorem 2.2 for 3-prime ideals.

Theorem 4.3. Let R be a zero-symmetric near-ring and P an ideal of R. Then the following
statements are equivalent:

() Pis a 3-prime ideal of R.

(1) UBCP implies U C P or BC P, where U is a semigroup right ideal of R and B is a
non-empty subset of R.

(i) UV C Pimplies U CPor V C P, where U and V are semigroup right ideals of R.

We cannot eliminate the condition “zero-symmetric” in Theorem 4.3 as the following
example shows:

Example 7. Observe that {0} is not a 3-prime ideal in Example 1 although it satisfies the
condition “If UV C {0}, then U C {0} or V C {0}, where U and V are semigroup right ideals
of K. This shows that “zero-symmetric” in Theorem 4.3 is not redundant.

Now, we would like to generalize Definition 2.1.

Definition 4.2. Let R be a near-ring with an ideal /.

(i) Let A be a non-empty subset of R. We say that A is a left I set-attractor (a right /
set-attractor) of R if there exists a non-empty subset Bof Rand B & I such that ABC I (BA C ).
We say that A is an [ set-attractor of R if A is a left or a right I set-attractor of R.

(i) Let Abeanideal of R. We say that A is a left [ ideal-attractor (a right 7 ideal-attractor)
of R if there exists an ideal Bof Rand B & I such that ABC I (BA CI). We say that Aisan [
ideal-attractor of R if A is a left or a right / ideal-attractor of R.

We can do the same definitions if A is a left (right) ideal of R, a left (right, two-sided)
R-subgroup of R, a semigroup ideal of R or a semigroup left (right) ideal of R.

Example 8. Let Rbeanear-ring with an ideal / # R. Any non-empty subset of / is a right /
set-attractor of R and hence an I set-attractor of R. In particular, [ is an [ set-attractor of R.
Also, if there exist an ideal (a left (right) ideal, a left R-subgroup, a semigroup left ideal) B of R
such that B & I, then [ is an [ ideal-attractor (I left (right) ideal-attractor, I left R-subgroup-
attractor, / semigroup left ideal-attractor) of R.

Definition 4.3. Let R be a near-ring with an ideal P. If A is a P set-attractor (P ideal-
attractor, etc.) of R, then we say that A is an internal P set-attractor (P ideal-attractor, etc.) of R
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if ACP.If A & P,then we say that A is an external P set-attractor (P ideal-attractor, etc.) of R.
If R does not have any external P set-attractors (P ideal-attractors, etc.), then we say that R is
without external P set-attractors (P ideal-attractors, etc.), i.e. for a P set-attractor (P ideal-
attractor, etc.) A of R, we have that A C P

Example 9. (i) Any near-ring R is without external (or internal) R-set attractors.

(i) Any near-ring without zero divisors is without external {0}-set attractors.

(i) Let R be the ring Z4. Take P to be the ideal {0,2}. Then R is without external P
set-attractors.

(iv) Let Rbe thering Zg. Take Pto be the ideal {0}. Then {2}, {3} and {4} are external P
set-attractors and {0} is an internal P set-attractor.

Theorem 4.4. Let R be a near-ring with an ideal P. Then the following statements are
equivalent:

(1) R is without external P set-attractors.
(1) Pis a completely prime ideal of R.

Proof. (i) implies (i), Suppose (i) holds and ab € P for some a,b € R.So {a}{b} CP.Ifa ¢ P,
then b € P by (i) and P is completely prime.

(i1) implies (i). Suppose (ii) holds and A is a P set-attractor of R. So there exists a non-empty
subset B of R and B & P such that ABC P or BA C P. Suppose the case is ABCP. Take
y€B—P.So xy e P for all x € A and then A C P by (ii). By the same way we can do for the
other case. So R is without external P set-attractors. ll

Remark 4.2. () If / = {0} in Definition 4.2, then we have Definition 2.1.
(i) From theabove two definitions, Theorem 4.2 and 4.4, we can rewrite the statements of
different kinds of prime ideals as follows:
Let R be a near-ring with an ideal P. Then

(1) Pis completely prime if and only if Ris without external P set-attractors if and only if
for every two non-empty subsets A and B of R, ABC P implies AC P or BCP.

(2) Pis O-prime if and only if R is without external P ideal-attractors.
(3) Ris 1-prime if and only if R is without external P right ideal-attractors.
(4) Ris 2-prime if and only if R is without external P right R-subgroup-attractors.

(5) Ris 3-prime if and only if R is without external P semigroup left ideal-attractors.
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