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Abstract
In this paper some characterizations for the existence of warped product pointwise semi-slant submanifolds of
cosymplectic space forms are obtained. Moreover, a sharp estimate for the squared norm of the second
fundamental form is investigated, the equality case is also discussed. By the application of derived inequality,
we compute an expression for Dirichlet energy of the involved warping function. Finally, we also proved some
classifications for these warped product submanifolds in terms of Ricci solitons and Ricci curvature. A non-
trivial example of these warped product submanifolds is provided.
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1. Introduction
The study ofwarped productmanifolds has been a favourite topic in the field of geometry due
to its applications in Physics and relativistic theories [1]. Many basic solutions to Einstein
field equations are given by warped products [1]. The concept of modelling of space–time
near black holes uses the idea of warped product manifolds [2]. Schwartzschild space–time is
an example of warped product P3 r S

2 where the base P ¼ R3Rþ is a half plane r > 0 and
fibre S2 is the unit sphere. Under certain conditions, the Schwartzschild space–time becomes
black hole. A cosmological model to model the universe as a space–time known as
Robertson–Walker model is a warped product [3].

Submanifolds
of cosymplectic

space forms

53

JEL Classification — 53C25, 53C40, 53C42, 53D15
© Lamia Saeed Alqahtani. Published in the Arab Journal of Mathematical Sciences. Published by

Emerald PublishingLimited.This article is published under the Creative CommonsAttribution (CCBY4.0)
license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to the original publication and
authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The author is highly thankful to anonymous referee for his/her valuable suggestions and comments
which have improved the paper.

Declaration of Competing Interest: The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence the work reported in this paper.

The publisher wishes to inform readers that the article “Warped product pointwise semi-slant
submanifolds of cosymplectic space forms and their applications”was originally published by the previous
publisher of the Arab Journal of Mathematical Sciences and the pagination of this article has been
subsequently changed. There has been no change to the content of the article. This change was necessary
for the journal to transition from the previous publisher to the new one. The publisher sincerely apologises
for any inconvenience caused. To access and cite this article, please use Alqahtani, L. S. (2019), “Warped
product pointwise semi-slant submanifolds of cosymplectic space forms and their applications”, Arab
Journal of Mathematical Sciences, Vol. 27 No. 1, pp. 53-72. The original publication date for this paper was
19/12/2019.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1319-5166.htm

Received 20 August 2019
Revised 30 November 2019
Accepted 1 December 2019

Arab Journal of Mathematical
Sciences

Vol. 27 No. 1, 2021
pp. 53-72

Emerald Publishing Limited
e-ISSN: 2588-9214
p-ISSN: 1319-5166

DOI 10.1016/j.ajmsc.2019.12.001

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1016/j.ajmsc.2019.12.001


One of the important task in Physics and Engineering is to find the Dirichlet energy of
smooth functions. Dirichlet energy is analogous to Kinetic energy. On a compact manifoldM,
the Dirichlet energy of any smooth function λ : M →R is given by

EðλÞ ¼ 1

2

Z
M

k∇λk2d V ;

where∇λ is the gradient of λand dV is the volume element. It is obvious thatEðλÞ≥ 0 for any
smooth function λ. We know that the manifolds of non-zero (constant) curvature cannot be
represented as a product manifold. So, considering the fact that a Riemannian product of
manifolds cannot has negative curvature, the idea of warped product of manifolds came into
existence. To construct the class of manifolds of negative or non-positive curvature, R. L.
Bishop and B. O’Neill [4] introduced this idea of warped product manifolds. Warped product
manifolds (see definition in Section 2) are a generalized setting of product manifolds. Since
warping functions of thewarped productmanifolds are positive valued smooth functions, our
interest is to find the Dirichlet energy of these functions.

Some intrinsic properties of warped product manifolds were studied in [4]. Initial extrinsic
studies of warped product manifolds in the almost complex setting were performed by B. Y.
Chen [5,6] while obtaining some existence results for CR-submanifolds to be CR-warped
product submanifolds in Kaehler manifolds. On the other hand, in the almost contact settings
contact CR-warped product submanifolds were explored by Hasegawa et al. [7]. Many other
geometers have also explored warped product manifolds in contact settings and various
existence results have been obtained [8–11].

Warped product pointwise semi-slant submanifold is another generalized class of warped
product semi-slant submanifolds and contact CR-warped product submanifolds. In [12], Park
studied the warped product pointwise semi-slant warped product submanifolds. After that,
Ali and Ozel [13] extended this study in the setting of cosymplectic manifolds and they
obtained some optimal inequalities related to the second fundamental form and warping
function. Warped product pointwise semi-slant submanifolds for almost contact and almost
complex manifolds were explored in (see [14–16]).

On the other hand the Gradient Ricci soliton are extensively investigated in the theory of
relativity, physics as well as in the differential geometry. The classification results related to
Ricci Soliton and Gradient Ricci solitons with the warped product structure have been
established in [17–20]. Moreover, the Ricci curvature has a significant nature in Riemannian
geometry, for example Ricci flat is a solution of Einstein field equation on a Riemannian
manifold in which cosmological constant vanishes. More clearly, in the theory of general
relativity the Ricci tensor is correlated with Einstein’s field equation to study the material
contents of universe. So, in comparison with Riemannian curvature, the Ricci curvature is
more significant in the theory of relativity and physics.

In the present article, we study warped product pointwise semi-slant submanifolds of
cosymplectic space forms and obtain some interesting inequalities for warped product
pointwise semi-slant submanifolds.We estimate the squared norm of the second fundamental
form in terms of warping function and slant function. The equality case is discussed
accordingly. We explored some applications of equality case of the derived inequality. More
precisely, we calculate Dirichlet energy of the warping functions by using our derived
inequality. Finally, we obtain the classification of the warped product pointwise semi-slant
submanifolds admitting the gradient Ricci soliton, in terms of Ricci curvature and second
fundamental form, some existence results are also established.

The paper is organized as follows: Section 2 is devoted to basic definitions, formulae and
preliminary results which are required for the subsequent study of the paper. In Section 3, we
explore the existence of warped product pointwise semi-slant submanifolds in cosymplectic
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space forms and prove our main results. A non-trivial example is given for the warped
product pointwise semi-slant submanifolds in a cosymplectic manifold. Using the derived
inequality, formulae for Dirichlet energy of warping function is obtained in Section 4.
Conclusions are presented in Section 5. Bibliography is given at the end of the paper.

2. Preliminaries
A ð2nþ 1Þ-dimensional C∞-manifold �M is said to have an almost contact structure if on �M
there exist a tensor fieldΨ of type ð1; 1Þ, a vector field ηand a 1-form ζ satisfying the following
properties [21]

Ψ 2 ¼ −I þ ζη⊗ η; Ψη ¼ 0; ζ+Ψ ¼ 0; ζðηÞ ¼ 1: (2.1)

The manifold �M with the structure ðΨ ; η; ζÞ is called almost contact metric manifold. There
exists a Riemannian metric g on an almost contact metric manifold �M, satisfying the
following

ζðY Þ ¼ gðY ; ηÞ; gðΨY ;ΨVÞ ¼ gðY ;V Þ � ζðY ÞζðV Þ; (2.2)

for all Y ;V ∈T �M where T �M is the tangent bundle of �M.
An almost contact metric structure ðΨ ; η; ζ; gÞ is said to be cosymplectic manifold if it

satisfies the following tensorial equation [21]

ð�∇YΨÞV ¼ 0; (2.3)

for any Y ;V ∈T �M, where �∇ denotes the Riemannian connection of the metric g. Moreover,
for a cosymplectic manifold �∇Yη ¼ 0: (2.4)

A cosymplectic manifold �M is said to be a cosymplectic space form [21] if it has constant
Ψ-holomorphic sectional curvature c and is denoted by �MðcÞ. The curvature tensor �R of
cosymplectic space form �MðcÞ is given by

�RðY1;Y2ÞU ¼ c

4
fgðY2;VÞY1 � gðY1;V ÞY2 þ gðY1;ΨV ÞΨY2;

� gðY2; ΨVÞΨY1 þ 2gðY1;ΨY2ÞΨV þ ζðY1ÞζðV ÞY2

�ζðY2ÞζðV ÞY1 þ gðY1;V ÞζðY2Þη� gðY2;V ÞζðY1Þηg

(2.5)

for any vector fields Y1;Y2;V on �M.
Let M be a submanifold of an almost contact metric manifold �M with induced metric g.

The Riemannian connection �∇ of �M induces canonically the connections ∇ and ∇⊥ on the
tangent bundle TM and the normal bundle T⊥M of M respectively, then the Gauss and
Weingarten formulae are given by

�∇Y1
Y2 ¼ ∇Y1

Y2 þ σðY1;Y2Þ; (2.6)

�∇Y1
ξ ¼ −AξY1 þ ∇⊥

Y1
ξ; (2.7)

for eachY1;Y2 ∈TM and ξ∈T⊥M, where σ andAξ are the second fundamental form and the
shape operator respectively for the immersion of M into �M, they verify the relation

gðσðY1;Y2Þ; ξÞ ¼ gðAξY1;Y2Þ; (2.8)

where g denotes the Riemannian metric on �M as well as the induced metric on M.
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For a submanifold M of a Riemannian manifold �M, the equation of Codazzi is given by

ð�RðY1;Y2ÞVÞ⊥ ¼ ∇
⊥

Y1
σðY1;VÞ �∇

⊥

Y2
σðY1;VÞ þ σ

�
∇Y2

Y1;V
�� σ

�
∇Y1

Y2;V
�

þσ
�
Y1;∇Y2

V
�� σ

�
Y2;∇Y1

V
�

where ð�RðY1;Y2ÞV Þ⊥ denotes the normal component of the curvature tensor �RðY1;Y2ÞV .
If PY and FY denote the tangential and normal component of ΨY respectively for any

Y ∈TM, we can write
ΨY ¼ PY þ FY : (2.9)

Similarly, for any ξ∈T⊥M, we write

Ψξ ¼ tξþ f ξ; (2.10)

where tξand f ξare the tangential and normal components ofΨξ respectively. Thus P (resp. f )
is 1–1 tensor field on TM (resp. T⊥M) and t (resp. F) is a tangential (resp. normal) valued
1-form on T⊥M (resp. TM). The covariant derivatives of the tensor fields Ψ, P and F are
defined as �

�∇Y1
Ψ
�
Y2 ¼ ∇Y1

ΨY2 � Ψ∇Y1
Y2 (2.11)�

�∇Y1
P
�
Y2 ¼ ∇Y1

PY2 � P∇Y1
Y2; (2.12)�

�∇Y1
F
�
Y2 ¼ ∇

⊥

Y1
FY2 � F∇Y1

Y2: (2.13)

From Eqs. (2.3), (2.6), (2.7), (2.9) and (2.10), we have�
�∇Y1

P
�
Y2 ¼ AFY2

Y1 þ tσðY1;Y2Þ � gðY1;Y2Þη (2.14)�
�∇Y1

F
�
Y2 ¼ fσðY1;Y2Þ � σðY1;PY2Þ: (2.15)

The mean curvature vector H of M is given by

H ¼ 1

m

Xm
s¼1

σðes; esÞ;

where m is the dimension of M and fe1; e2; . . . ; emg is a local orthonormal frame of vector
fields on M. The squared norm of the second fundamental form σ is defined as

kσk2 ¼
Xm
r;s¼1

gðσðer; esÞ; σðer; esÞÞ: (2.16)

A submanifoldM of �M is said to be a totally geodesic submanifold if σðY1;Y2Þ ¼ 0 and totally
umbilical submanifold if σðY1;Y2Þ ¼ gðY1;Y2ÞH, for each Y1;Y2 ∈TM :

Definition. ([22]). A submanifoldM of an almost contact metric manifold �M is said to be
slant submanifold if for any y∈M and Y1 ∈TyM − hηi, the angle between Y1 and ΨY1 is
constant. The constant angle θ∈ ½0; π=2� is then called slant angle of M in �M. If θ ¼ 0, the
submanifold is invariant submanifold and if θ ¼ π=2 then it is anti-invariant submanifold. If
θ≠ 0; π=2, it is proper slant submanifold.

For slant submanifolds of the contact metric manifolds J. L. Cabrerizo et al. [22] proved the
following lemma.

Lemma 2.1. Let M be a submanifold of an almost contact metric manifold �M such that
η∈TM, then M is a slant submanifold if and only if there exists a constant λ∈ ½0; 1� such that
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P2 ¼ λðI � ζ⊗ ηÞ; (2.17)

where λ ¼ −cos2 θ.
The notion of pointwise slant submanifolds was introduced by F. Etayo [23] as a natural

generalization of the slant submanifolds in the setting of almost Hermitian manifolds. Later,
B. Y. Chen and O. J. Garay [24] investigated pointwise slant submanifolds for almost
Hermitian manifolds and obtained some fundamental results. A step forward, K. S. Park [12]
extended the concept of pointwise slant submanifolds in almost contact metric manifolds.
Recently, Uddin and Al-Khalidi [25] modified the definition of pointwise slant submanifolds
for almost contact metric manifolds. More precisely, a submanifold M of an almost contact
metric manifold �M is said to be pointwise slant submanifold if for anyX ∈TxM such that η is
tangential toM, the angle θðXÞ between ΨX and TxM − f0g is independent of the choice of
non zero vector field X ∈TpM − f0g. In this case θ is treated as the function onM, which is
called the slant function of the point wise slant function. Now, we have the following
characterizing theorem

Theorem 2.2. ([25]). Let M be a submanifold of an almost contact metric manifold �M such
that η∈TM. Then, M is pointwise slant if and only if

P2 ¼ cos2 θð−I þ ζ⊗ ηÞ (2.18)

for some real valued function θ on TM
Thus, one has the following consequences of the above formula.

gðPY1;PY2Þ ¼ cos2 θ½gðY1;Y2Þ � ζðY1ÞζðY2Þ�; (2.19)

gðFY1;FY2Þ ¼ sin2 θ½gðY1;Y2Þ � ζðY1ÞζðY2Þ� (2.20)

for all Y1;Y2 ∈TM.
Pointwise semi-slant submanifolds were defined and studied by Park [12] as a natural

generalization of contact CR-submanifolds in terms of slant function. Now, we have the
following definition

Definition. A submanifold M of an almost contact metric manifold �M is said to be a
pointwise semi-slant submanifold if there exist two orthogonal complementary distributions
D and Dθ on M such that

(i) The tangent bundle TM can be written as TM ¼ D⊕Dθhηi;

(ii) The distribution D is invariant,

(iii) The distribution Dθ is pointwise slant with a slant function θ.

As a generalization of the product manifolds, one can consider the warped product of
manifolds which are defined as follows.

Let ðC1; gC1
Þ and ðC2; gC2

Þ be the two Riemannian manifolds with gC1
and gC2

as their
Riemannian metrics resp. and Φ be a positive differentiable function on C1. Let
π1 : C1 3C2 →C1, π2 : C1 3C2 →C2 are the projection maps given by πC1

ðc1; c2Þ ¼ c1 and
πC2

ðc1; c2Þ ¼ c2 for every ðc1; c2Þ∈C1 3C2. The warped product M ¼ C1 3 Φ C2 [4] is the
manifold C1 3C2 equipped with the Riemannian structure such that

gðY1;Y2Þ ¼ g1ðπ1*Y1; π1*Y2Þ þ ðΦ+π1Þ2g2ðπ2*Y1; π2*Y2Þ;
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for all Y1;Y2 ∈TM, where πi* denotes the tangent map corresponding to πi for each i. The
function Φ is called the warping function of the warped product manifold. If the warping
function is constant then the warped product manifoldM is said to be trivial warped product.

LetY1 be a vector field on C1 andY2 be a vector field on C2, then from Lemma 7.3 of [3], we
have

∇Y1
Y2 ¼ ∇Y2

�
Y1Φ

Φ

�
Y2 (2.21)

where∇ is the Levi-Civita connection onM. For a warped productM ¼ C1 3 Φ C2 it is easy to
observe that

∇Y1
Y2 ¼ ∇Y2

Y1 ¼ ðY1lnΦÞY2 (2.22)

for Y1 ∈TC1 and Y2 ∈TC2.
∇Φ is the gradient of Φ and is defined as

gð∇Φ;Y Þ ¼ YΦ; (2.23)

for all Y ∈TM.
Let M be an m-dimensional Riemannian manifold with the Riemannian metric g and let

fe1; e2; . . . ; emg be an orthogonal basis of T M. Then as a result of (2.23), we get

k∇Φk2 ¼
Xm
i¼1

ðeiðΦÞÞ2: (2.24)

The Laplacian of Φ is defined by

ΔΦ ¼
Xm
i¼1

��
∇eiei

�
Φ� eieiΦ

�
: (2.25)

The Hessian tensor for a differentiable functionΦ is symmetric covariant tensor of rank 2and
is defined as

ΔΦ ¼ −traceHΦ (2.26)

or we can also write

HessΦ ¼ −ΔΦ (2.27)

Now, we state the Hopf’s Lemma.
Hopf’sLemma [26]. IfM is anm-dimensional connected compact Riemannianmanifold. IfΦ
is a differentiable function onM s. t.ΔΦ≥ 0 everywhere onM (orΔΦ≤ 0 everywhere onM),
then Φ is a constant function.

For a compact orientable Riemannian manifold M with or without boundary and as a
consequences of the integration theory of manifolds, we have [27]Z

M

ΔΦdV ¼ 0; (2.28)

where Φ is a function on M and dV is the volume element of M.
The Ricci soliton idea was given by Hamilton [28]. It is regarded as the natural generality

of Einstein metrics and they are the self similar solution of the Ricci flow v
vt gðtÞ ¼ −2RicðtÞ. If

there exists a smooth vector field Y such that the Ricci tensor meets the following condition

Ricþ 1

2
LYg ¼ α; (2.29)

for any constant α, whereLY is the Lie derivative, then the Riemannianmetric g on a complete
Riemannian manifold �M is named as Ricci Soliton. If α < 0; α ¼ 0 and α > 0 then the Ricci
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soliton is called expanding, steady and Shrinking respectively. If we specify Y ¼ ∇Φ for a
smooth function Φ defined on �M, then g admits gradient Ricci soliton with the potential
function Φ. For this case (2.29) takes the form

Ricþ∇
2Φ ¼ αg: (2.30)

Since the Laplacian Δ and the gradient ∇2 are related as Δ ¼ ∇2. Thus, in terms of Hessian
(2.29) can be expressed as

Ric ¼ αg þ HessΦ: (2.31)

Note 2.1. If the potential function Φ is constant on a gradient Ricci soliton, then
ðM ; g;∇Φ; λÞ is an Einstein manifold.

3. Warped product pointwise semi-slant submanifolds
In [12], K. S. Park, proved the existence of the warped product pointwise semi-slant warped
product submanifolds of the type NT 3 ΦNθ of cosymplectic manifolds and achieved the
following lemma

Lemma3.1. LetM ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold of a
cosymplectic manifold �M such that η ∈ TNT, where NT and Nθ are invariant and pointwise
slant submanifolds of �M, respectively. Then

gðσðY ;W Þ;FPZÞ ¼ −cos2 θY lnΦ gðW ; ZÞ � ΦY lnΦgðW ;PZÞ; (3.1)

and

gðσðΨY ;W Þ;FZ Þ ¼ Y lnΦg ðW ; ZÞ � ΨY lnΦg ðW ;TZÞ; (3.2)

for any Y ∈T NT and Z ; W ∈T Nθ.
Now let M ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold of a

cosymplectic manifold �M and we consider the vector field η tangent to NT. If D is invariant
distribution and Dθ is proper point wise slant distribution with the slant function θ, then the
tangent bundle TM and T⊥M are decomposed (resp.) as follows

TM ¼ D⊕Dθ
⊕ hηi;

T⊥M ¼ FDθ
⊕ μ;

where μ is the orthogonal complementary distribution ofFDθ inT⊥M. It is easy to see that μ is
an invariant subbundle of T⊥M with respect to Ψ .

In view of the above direct decomposition, the second fundamental form σ can be written
as

σðU1;U2Þ ¼ σFDθðU1;U2Þ þ σμðU1;U2Þ; (3.3)

for U1;U2 ∈TM, where σFDθðU1;U2Þ and σμðU1;U2Þ are the components of σðU1;U2Þ in the
normal sub-bundles FDθ and μ respectively. Moreover if fV1;V2; . . . ;Vqg be a local
orthonormal frame of vector fields of Dθ, then

σFDθ ðU1;U2Þ ¼
Xq

r¼1

σrðU1;U2ÞFVr (3.4)

Submanifolds
of cosymplectic

space forms

59



where

σrðU1;U2Þ ¼ csc2 θgðσðU1;U2Þ;FVrÞ (3.5)

To ensure the existence, we construct an example of a warped product pointwise semi-slant
submanifold of the type M ¼ NT 3 Φ Nθ in cosymplectic manifold with η tangent to NT.

Example. Let �M ¼ C5 3 R be a Riemannian product of Euclidean space C5 with line R
such that the structure vector field η ¼ v

vt, 1-form ζ ¼ dt and metric g ¼ g1 þ dt2, where g1 is

the metric on Euclidean space. Then ð �M ;Ψ ; η; ζ; gÞ is a cosymplectic manifold. Let

f : M 5
→

�M
11
be a point wise semi-slant submanifold such that 0 < u; v < 1 is defined as

e1 ¼ u tanh x; e2 ¼ v tanh x; e3 ¼ u tanh y; e4 ¼ v tanh y; e5 ¼ u sech x;

e6 ¼ vsech x; e7 ¼ usech y; e8 ¼ vsech y; e9 ¼ x; e10 ¼ y; e11 ¼ 0:

The tangent space T M is spanned by the vector fields X1, X2, X3, X4, X5 such that

X1 ¼ sech y
v

ve8
þ sech x

v

ve6
þ tanh y

v

ve4
þ tanh x

v

ve2
;

X2 ¼ sech y
v

ve7
þ sech x

v

ve5
þ tanh y

v

ve3
þ tan x

v

ve1
;

X3 ¼ η ¼ v

vt
;

X4 ¼ v

ve9
þ v tanh x

v

ve6
þ u tan x

v

ve5
� v sech x

v

ve2
� u sech x

v

ve1
;

X5 ¼ v

ve10
þ v tanh y

v

ve7
þ u tan y

v

ve8
� v sech y

v

ve4
� usech y

v

ve3
:

Then Dθ ¼ spanfX4;X5g is a pointwise slant distribution with slant function cos−1ð 1
u2þv2þ1

Þ
and invariant distribution D ¼ spanfX1;X2;X3g. Thus M 5 ¼ NT 3 Φ Nθ is a non-trivial
warped product pointwise semi-slant submanifold of M 11 with the warping

function Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2 þ 1Þ

p
.

In this section, for convention, we denote by Y ;X ∈TNT and V ;U ∈TNθ as the vector
fields of respective tangent bundles of NT and Nθ. At first, some initial results to be proved.

Lemma 3.2. Let NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold of a

cosymplectic manifold �M. Then

(i) ηlnΦ ¼ 0,

(ii) gðσðΨY ;V Þ;FVÞ ¼ YlnΦkVk2,

(iii) gðσðΨY ;V Þ;ΨσðY ;VÞÞ ¼ kσμðY ;V Þk2 þ cos2 θðYlnΦÞ2kVk2,

for all Y ∈TNT andV ∈TNθ, whereσμ is theμ component of the second fundamental form σ.

Proof. From (2.4), (2.6), and (2.22), it is easy to see that ηlnΦ ¼ 0. Moreover, part (ii) is a
particular case of (3.2). To prove part (iii), on making use of (2.6) and (2.3), we get

σðΨY ;VÞ ¼ ΨσðY ;VÞ þ Ψ∇VY � ∇VΨY :
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Now using (2.22), the above equation can be written as

σðΨY ;V Þ ¼ ΨσðY ;V Þ þ Y ln ΦΨ V � Ψ Y lnΦV :

Comparing the normal parts

σðΨY ;VÞ ¼ ΨσμðY ;V Þ þ Y lnΦFV ;

taking inner product with Ψ σðY ;V Þ, we get
gðσðΨ Y ; VÞ;Ψ σðY ;V ÞÞ ¼ kσμðY ;V Þk2 þ YlnΦgðΨ σðY ;V Þ;FVÞ: (3.6)

Calculating the last term of above equation by using (2.6), (2.3), and (2.20) as follows

gðΨ σðY ;V Þ;FVÞ ¼ gðσðΨ Y ;VÞ;FVÞ � sin2 θY lnΦ kVk2:
Utilizing part (ii), we get

gðΨ σðY ;VÞ;FVÞ ¼ cos2 θYln ΦkVk2;
using in (3.6), we get the required result.

Lemma3.3. LetM ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold of a
cosymplectic manifold �M. Then

gðσðY ;PVÞ;FVÞ ¼ −gðσðY ;VÞ;FPV Þ ¼ −cos2 θY lnΦkVk2

for all Y ∈TNT, V ∈TNθ.

Proof. From the part (ii) of Lemma 3.2, we may obtain

gðσðPY ;VÞ;FUÞ þ gðσðPY ;UÞ;FVÞ ¼ 2Y lnΦgðV ;UÞ
for anyY ∈TNT andV ;U ∈TNθ. ReplacingU byPV ∈Dθ and using the fact thatV andPV
are orthogonal, we have

gðσðY ;PV Þ;FVÞ ¼ −gðσðY ;VÞ;F PVÞ: (3.7)

By using (2.12), (2.14), and (2.22), we have

PY lnΦV � Y lnΦPV ¼ tσðY ;V Þ:
Now taking inner product with U ∈TNθ in the above equation, we have

PY lnΦgðV ;UÞ � Y lnΦgðPV ;UÞ ¼ −gðσðY ;V Þ;FUÞ:
Interchanging V and U and subtracting the resultant from the above equation, we get

−gðσðY ;V Þ;FUÞ þ gðσðY ;UÞ;FVÞ ¼ 2Y lnΦ gðV ;PUÞ:
In particular, replacing U by PV ∈Dθ, the above equation yields

gðσðY ;VÞ;F PVÞ � gðσðY ;PVÞ;FV Þ ¼ −2 cos2 θY lnΦkVk2: (3.8)

Using (3.7), we obtain

gðσðY ;PVÞ;FVÞ ¼ −gðσðY ;V Þ;F PV Þ ¼ −cos2 θY lnΦkVk2: , (3.9)
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Lemma 3.4. On a warped product pointwise semi-slant submanifold M ¼ NT 3 Φ Nθ of a
cosymplectic manifold �M, we have

Xp

i¼1

"X2q
j;k¼1

g
�
σðΨei; e

k
�
;FejÞg�σðei;Pek�;FejÞ

� g
�
σðei; ek

�
;FejÞg�σðΦei;Pek�;FejÞ	 ¼ −4qcos2θk∇lnΦk2;

where fe0 ¼ η; e1; e2; . . . ; ep;Ψ e1;Ψe2; . . . ;Ψepg and fe1; e2; . . . ; eq; eqþ1 ¼ sec θPe1; eqþ2 ¼
sec θPe2; . . . ; e2q ¼ sec θPeqg are the frames of the orthonormal vector fields on T NT and
T Nθ respectively.

Proof. First, we expand the left hand term in the following way

Xp

i¼1

"X2q
j;k¼1

g
�
σðΨei; e

k
�
;FejÞg�σðei;Pe k

�
;FejÞ

#

¼
Xp

i¼1

"X2q
j¼1

g
�
σðΨei; e

j
�
;FejÞg�σðei;Pe j

�
;Fe jÞ

þ
X2q
j≠ k¼1

g
�
σðΨ ei; e

k
�
;Fe jÞg�σðei;Pe k

�
;Fe jÞ

#

¼
Xp

i¼1

"X2q
j¼1

g
�
σðΨei; e

j
�
;Fe jÞg�σðei; Pe j

�
;Fe jÞ

þ
Xq

j¼1

g
�
σðΨei; e

j
�
;Fe jþqÞg�σðei;Pe j

�
;Fe jþqÞ

þ
Xq

j¼1

g
�
σðΨei; e

jþq
�
;Fe jÞg�σðei;Pe jþq

�
;Fe jÞ

#

¼
Xp

i¼1

"X2q
j¼1

g
�
σðΨei; e

j
�
;Fe jÞg�σðei; Pe jÞ;Fe j

�

þsec2 θ
Xq

j¼1

g
�
σðΨei; e

j
�
;FPe jÞg�σðei;Pe j

�
;FPe jÞ

−
Xq

j¼1

g
�
σðΨei;Pe

j
�
;Fe jÞg�σðei; e j

�
;Fe jÞ

#
:

Using part (ii) of Lemmas 3.2, 3.3 and utilizing (2.24), we get

Xp

i¼1

"X2q
j;k¼1

g
�
σðΨ ei; e

k
�
;Fe jÞg�σðei;Pe k

�
;Fe jÞ

#

¼
Xp

i¼1



−2q cos2 θðeilnΦÞ2 � 2q cos2 θðΨ eilnΦÞ2

	
¼ −2q cos2 θk∇lnΦk2:
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Replacing ei by Ψei in above equation, we get

Xp

i¼1

"X2q
j;k¼1

g
�
σðei; ek

�
;Fe jÞg�σðΨei;Pe

k
�
;Fe jÞ

#
¼ 2q cos2 θk∇lnΦk2:

Subtracting the above two findings, we get the required result. ,
Now, we prove the following characterization.

Theorem 3.5. Let M ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold
of a cosymplectic space form �MðcÞ such that NT is a compact submanifold. Then M is a
Riemannian product submanifold if the following inequalities holdX2p

i¼1

X2q
j¼1

��σμ

�
ei; e

j
���2

≤ cpq sin2 θ � 2q
�
cos2 θ þ 2 cos2 θ

�k∇lnΦk2
and Xp

i¼1

X2q
j¼1

g
�
σμðΨei; e

j
�
; σμ

�
ei;Pe

j
��

≥ 0;

where σμ denotes the component of σ in μ, and ð2pþ 1Þand 2qare the dimensions of NT, andNθ

respectively.

Proof. For anyunit vector fieldsY ∈T NT andV ∈T Nθ, using (2.1), (2.5), and (2.20), wehave

�RðY ; ΨY ; V ; FVÞ ¼ �c

2
sin2 θkYk2kVk2 (3.10)

On the other hand by Codazzi equation
�RðY ;ΨY ;V ;FV Þ ¼ gð:ð∇⊥

YσðΨY ;V Þ;FVÞ � g
�
∇

⊥

ΨYσðY ;V Þ;FVÞ
þgðσðY ;∇ΨYV Þ;FVÞ � gðσðΨY ;∇YVÞ;FVÞ
�gðσð∇YΨY ;V Þ;FVÞ þ gðσð∇ΨYY ;VÞ;FVÞ:

(3.11)

Now, we compute the values of the terms involved in (3.11). First, we have

g
�
∇

⊥

YσðΨY ;VÞ;FV Þ ¼ YgðσðΨY ;VÞ;FVÞ � g
�
σðΨY ;V Þ;∇⊥

YFV Þ:
Using the part (ii) of Lemma 3.2 in the above equation, we get

g
�
∇

⊥

YσðΨY ;VÞ;FVÞ ¼ Y 2 lnΦkVk2 þ 2ðYlnΦÞ2kVk2
�g

�
σðΨY ;V Þ;∇⊥

YFVÞ: (3.12)

We calculate the last term of (3.12) using (2.9) as follows

g
�
σðΨY ;VÞ;∇⊥

YFVÞ ¼ gðσðΨY ;VÞ; �∇Y ðΨV � PVÞÞ:

By the use of (2.6) and (2.11) the above equation takes the form

g
�
σðΨY ;V Þ;∇⊥

YFVÞ ¼ gðσðΨY ;V Þ; ð�∇YΨÞV þ Ψ �∇YV Þ
�gðσðΨY ;VÞ; σðY ;PVÞÞ:

Using (2.3), (2.6), (2.22), part (ii), and (iii) of Lemma 3.2, we obtain

g
�
σðΨY ;V Þ;∇⊥

YFVÞ ¼ ðY lnΦÞ2�1þ cos2 θ
�kVk2 þ kσμðY ;VÞk2

�gðσðΨY ;VÞ; σðY ;PV ÞÞ: (3.13)
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Utilizing (3.13) in (3.12), we get

g
�
∇⊥

YσðΨY ;VÞ;FVÞ ¼ Y 2lnΦkVk2 þ ðY lnΦÞ2sin2θkVk2

�kσμðY ;VÞk2 þ gðσðΨY ;V Þ; σðY ;PVÞÞ:
(3.14)

Similarly, we can write

g
�
∇

⊥

ΨYσðY ;V Þ;FVÞ ¼ −ðΨY Þ2lnΦkVk2 � ðΨY lnΦÞ2sin2θkVk2

þkσμðΨY ;VÞk2 þ gðσðY ;V Þ; σðΨY ;PVÞÞ:
(3.15)

From the part (ii) of Lemma 3.2, we have

gðAFVV ;ΨY Þ ¼ Y lnΦkVk2:
Replacing Y by ∇YY (using the totally geodesicness of NT, ∇YY ∈T NT) in the above
equation, we have

gðAFVV ;Ψ∇YY Þ ¼ ∇YY lnΦkVk2:
By using (2.6), the above equation takes the form

gðAFVV ;Ψ �∇YY � ΨσðY ;Y ÞÞ ¼ ∇YY lnΦkVk2:
By using the fact that the first factorNT is totally geodesic inM, it can be easily verified that
σðY1;Y Þ2∈ μ, for all Y1;Y2 ∈TNT. Using this and (2.11) in the above equation, we get

gðσð∇YΨY ;VÞ;FVÞ ¼ ∇YY lnΦkVk2: (3.16)

Similarly, we can write

gðσð∇ΨYY ;V Þ;FVÞ ¼ −∇ΨYΨY lnΦkVk2: (3.17)

By use of (2.22) and the part (ii) of Lemma 3.2, we have

gðσðΨY ;∇YV Þ;FVÞ ¼ ðY lnΦÞ2kVk2 (3.18)

and

gðσðY ;∇ΨYV Þ;FV Þ ¼ −ðΨYlnΦÞ2kVk2: (3.19)

Substituting values from (3.10), (3.14), (3.15), (3.16), (3.17), (3.18), and (3.19) in (3.11), we obtain

�c

2
sin2θkYk2kVk2 ¼ Y 2lnΦkVk2 þ ðΨY Þ2lnΦkVk2

�ðY lnΦÞ2cos2θkYk2 � ðΨY lnΦÞ2cos2θkVk2

�kσμðY ;V Þk2 � kσμðΨY ;VÞk2

�∇YY lnΦkVk2 � ∇ΨYΨY lnΦkVk2

þgðσðΨY ;V Þ; σðY ;PVÞÞ � gðσðY ;V Þ; σðΨY ;PVÞÞ:
Let fe0 ¼ η; e1; e2; . . . ; ep; epþ1 ¼ Ψe1; epþ2 ¼ Ψe2; . . . ; e2p ¼ Ψepg be the orthonormal
frame on T NT and fe1; e2; . . . ; eq; eqþ1 ¼ sec θPe1; eqþ2 ¼ sec θPe2; . . . ; e2q ¼ sec θPeqg be
an orthonormal frame on T Nθ. Now, using the decomposition (3.3), formula (3.5), (2.6) and
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(2.3), the above equation takes the form

�c

2
sin2θkYk2kVk2 ¼ Y 2lnΦkVk2 þ ðΨY Þ2lnΦkVk2

�ðY lnΦÞ2cos2θkVk2 � ðΨ Y lnΦÞ2cos2θkVk2

�kσμðY ;VÞk2 � kσμðΨY ;V Þk2

�∇YYlnΦkVk2 � ∇ΨYΨ YlnΦkVk2

þcsc2θ
X2q
j¼1

½gðσðΨY ;V Þ;FVjÞgðσðX ;PVÞ;FVjÞ

�gðσðΨY ;VÞ;FVjÞgðσðΨY ;PV Þ;FVjÞ�kVjk2

þ2gðσμðΨY ;V Þ; σμðY ;PVÞÞ:
Now summing the above equation over i ¼ 1; 2; . . . ; p and j ¼ 1; 2; . . . 2q, using (2.24), (2.25)
and part (iii) of Lemma 3.2, one can get

2qΔðlnΦÞ ¼ cpq sin2θ � 2q cos2θk∇lnΦk2 �
X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2

�4q cot2θk∇lnΦk2 þ 2
Xp

i¼1

X2q
j¼1

gðσμðΨei; e
jÞ; σμðei;PejÞÞ:

(3.20)

From (3.20) if

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2
≤ cpq sin2 θ � 2qðcos2 θ þ 2 cot2 θÞ k∇lnΦk2

and

Xp

i¼1

X2q
j¼1

gðσμðΨei; e
jÞ; σμðei;PejÞÞ≥ 0;

then ΔlnΦ≥ 0, so by the Hopf’s Lemma, lnΦ is constant that mean Φ is constant, which
proves the theorem. ,

In the next theorem, we obtain the squared norm of the second fundamental form in terms
of the warping function and slant function.

Theorem 3.6. Let �MðcÞ be að2nþ 1Þ-dimensional cosymplectic space form and
M ¼ NT 3 Φ Nθ be an m-dimensional warped product pointwise semi-slant submanifold
such that NT is a ð2pþ 1Þ-dimensional invariant submanifold and Nθ be a 2q-dimensional
proper pointwise slant submanifold of �MðcÞ. If

Xp

i¼1

X2q
j¼1

gðσðΨei; e
jÞ; σðei;PejÞÞ≥ 0;

then
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(i) The squared norm of the second fundamental form σ satisfies

kσk2 ≥ cpq sin2 θ þ 2q sin2 θk∇lnΦk2 � 2qΔðlnΦÞ: (3.21)

(ii) The equality sign of (3.21) holds identically if and only if

(a) NT is totally geodesic invariant submanifold of �MðcÞ. Hence NT is a cosymplectic
space form.

(b) Nθ is totally umbilical submanifolds of �MðcÞ.
(c)

Pp
i¼1

P2q
j¼1gðσðΨei; e

jÞ; σðei;PejÞÞ ¼ 0.

Proof. From (3.20), we have

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ
��2

≥ cpq sin2 θ � 2qðcos2 θ þ 2 cot2 θÞk∇lnΦk2 � 2qΔðlnΦÞ: (3.22)

For the orthonormal frames fe0 ¼ η; e1; e2; . . . ; ep; epþ1 ¼ Ψe1; epþ2 ¼ Ψe2; . . . ; e2p ¼ Ψepg
and fe1; e2; . . . ; eq; sec θPe1; sec θPe2; . . . ; sec θPeqg, in view of the formulae (3.4), (3.5), part
(ii) of Lemma 3.2, we get

X2p
i¼0

X2q
j¼1

��σFDθðei; ejÞ
��2 ¼

X2p
i¼0

X2q
j;k¼1

csc2θgðσðei; ejÞ;FekÞ2

¼ csc2θ
X2p
i¼0

"X2q
j¼1

gðσðei; ejÞ;FejÞ2

þ
X2q
j≠ k¼1

gðσðei; ejÞ;FekÞ2
#

¼ csc2θ
X2p
i¼0

"
2qðeilnΦÞ2 þ sec2 θ

Xq

j¼1

n
gðσðei; ejÞ;FPejÞ2 þ gðσðei;PejÞ;FejÞ2

o#
:

Further using Lemma 3.3 and (2.24), the above equation reduced to

X2p
i¼0

X2q
j¼1

��σFDθðei; ejÞ
��2 ¼ 2q csc2 θk∇lnΦk2 þ 2q cot2 θk∇lnΦk2: (3.23)

From (3.22), (3.23) we get the required inequality.
To prove the part (ii), let σ0 be the second fundamental form for the immersion ofNθ inM.

Then for any U ;V ∈TNθ and Y ∈TNT, using Gauss formula, we have

gðσ0ðU ;VÞ;VÞ ¼ gð∇UV ;Y Þ ¼ −YlnΦgðU ;VÞ:
Using (2.23), we have

gðσ0ðU ;VÞ;Y Þ ¼ −gðU ;V Þgð∇lnΦ;Y Þ;
or

σ0ðU ;VÞ ¼ −gðU ;V Þ∇lnΦ: (3.24)
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If the equality sign of (3.21) holds identically, then we obtain

σðD;DÞ ¼ 0; σðDθ;DθÞ ¼ 0; (3.25)

gðσμðΨ D;DθÞ; σμðD;PDθÞÞ ¼ 0: (3.26)

The first condition of (3.25) implies thatNT is totally geodesic submanifold inM. On the other
hand it is easy to see that gðσðY1;Ψ Y2Þ;FVÞ ¼ 0, for all Y1;Y2 ∈ TNT, V ∈ TNθ. It
follows thatNT is totally geodesic in �MðcÞand hence is a cosymplectic space form. Moreover,
the second condition of (3.25) together with (3.24) implies that Nθ is a totally umbilical
submanifold.

This proves the theorem. ,

4. Some applications
Theorem 3.6 motivates us to obtain formulae to calculate the Dirichlet energy involving
warping function Φ. We denote by EðΦÞ the Dirichlet energy of a function Φ. For a compact
orientable warped product pointwise semi-slant submanifold M ¼ NT 3 Φ Nθ in a
cosymplectic space form �MðcÞ, we compute the Dirichlet energy of the warping function Φ
in the following theorem.

Theorem 4.1. Let M ¼ NT 3 Φ Nθ be a compact orientable warped product pointwise semi-
slant submanifold of a cosymplectic space form �MðcÞ, such that NT be a ð2pþ 1Þ-dimensional
invariant submanifold tangent to the structure vector field η and Nθ be a 2q-dimensional
pointwise slant submanifold of �MðcÞ. Then for each x∈Nθ, the Dirichlet energies of the warping
function satisfy the following

EðlnΦÞ ¼ 1

4q sin2 θ

Z
NT 3 fxg

kσk2dV þ cp

4
VolðNTÞ

if and only if

(i) NT is totally geodesic invariant submanifold of �MðcÞ and is a cosymplectic space form,

(ii) Nθ is totally umbilical submanifolds of �MðcÞ,
(iii)

Pp
i¼1

P2q
j¼1 gðσðΨ ei; e

jÞ; σðei;Pe jÞÞ ¼ 0,

Proof. On integrating the equality case of the inequality (3.21) and using the definition of
Dirichlet energy and (2.28), we get the required result. ,

If θ ¼ π=2, then the compact orientable warped product pointwise semi-slant submanifolds
become contact CR-warped product submanifolds. The following can be deduced from
Theorem 4.1.

Corollary 4.2. Let M ¼ NT 3 Φ N⊥ be a compact orientable contact CR-warped product
submanifold of a cosymplectic space form �MðcÞ, such that NT be a ð2pþ 1Þ-dimensional
invariant submanifold tangent to the structure vector field η and N⊥ be an 2q-dimensional anti-
invariant submanifold of �MðcÞ. Then for each x∈N⊥, we have

EðlnΦÞ ¼ 1

4q

Z
NT 3 fxg

kσk2dV þ cp

4
VolðNTÞ

if and only if
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(i) NT is totally geodesic invariant submanifold of �MðcÞand is a cosymplectic space form,

(ii) N⊥ is a totally umbilical anti-invariant submanifold of �MðcÞ.
If the equality sign of (3.21) holds, then

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2 ¼ cpq sin2 θ � 2qðcsc2 θ þ 2 cot2 θÞk∇lnΦk2 � 2qΔlnΦ: (4.1)

Since, the Laplacian of a smooth functionΦ is the trace of the Hessian of the function. In terms
of Hessian, (4.1) can be written as follows

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ
��2 ¼ cpq sin2θ � 2qðcsc2θ þ 2cot2θÞk∇lnΦk2

þ 2q
Xp

i¼1



HesslnΦðei; eiÞ þ HesslnΦðΨei;ΨeiÞ

	 (4.2)

Now, we have the following classification theorem for the warped product pointwise semi-
slant submanifolds admitting the gradient Ricci soliton satisfying the equality case of (3.21).

Theorem 4.3. Let �MðcÞ be a 2nþ1-dimensional cosymplectic space form and
M ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold admitting a
shrinking gradient Ricci soliton. If

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ
��2 þ 4pq ¼ cpq sin2 θ þ 2q

X2p
i¼1

Ricðei; eiÞ; (4.3)

then one of the following is true

(i) The slant function θ ¼ π=2 i.e., M is a contact CR-warped product submanifold,

(ii) The warping function Φ is constant i.e., M is trivial Riemannian product pointwise
semi-slant submanifold.

Proof. Suppose that warped product pointwise semi-slant submanifold M ¼ NT 3 ΦNθ

satisfies the basic equation of the Ricci soliton, such that the potential function τ ¼ lnΦ, then

RicðX ;Y Þ ¼ λgðX ;Y Þ þ HessτðX ;Y Þ; (4.4)

for all X ;Y ∈TNT. Considering that fe1; e2; . . . ; ep; epþ1 ¼ Ψe1; . . . ; e2p ¼ Ψepg be an
orthonormal frame of the vector fields on TNT. Now, taking summation over i ¼ 1; 2; . . . ; p
for X ¼ Y in (4.4), we haveXp

i¼1

Ricðei; eiÞ ¼ λpþþ
Xp

i¼1

Hessτðei; eiÞ: (4.5)

Replacing ei by Ψei in above equation, we getXp

i¼1

RicðΨei;ΨeiÞ ¼ λpþþ
Xp

i¼1

HessτðΨei;ΨeiÞ: (4.6)
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From (4.5) and (4.6), we have

X2p
i¼1

Ricðei; eiÞ ¼ 2λpþþ
Xp

i¼1

ðHessτðei; eiÞ þ HessτðΨei;ΨeiÞÞ: (4.7)

By the assumption that the equality case of (3.21) holds, then by (4.2)

1

2q

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2 ¼ cp

2
sin2 θ � ðcos2 θ þ 2 cot2 θÞk∇lnΦk2

þ
X2p
i¼1

Ricðei; eiÞ � 2λp;

(4.8)

or

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ
��2 ¼ cpq sin2 θ � 2qðcos2 θ þ 2 cot2 θÞk∇lnΦk2

þ 2q
X2p
i¼1

Ricðei; eiÞ � 4pqλ

By the assumption (4.3), we get

ðcos2 θ þ 2 cot2 θÞk∇lnΦk2 ¼ 0:

From the last equation it is evident that θ ¼ π=2 or the warping function is constant, which
proves the theorem.

If the submanifold M ¼ NT 3 Φ Nθ admits the steady gradient Ricci soliton, then from
last theorem, it is easy to conclude the following

Theorem 4.4. Let �MðcÞ be a 2nþ1-dimensional cosymplectic space form and
M ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold admitting a steady
gradient Ricci soliton. If

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2 ¼ cpq sin2 θ � 2q
X2p
i¼1

Ricðei; eiÞ ; (4.9)

then one of the following is true

(i) The slant function θ ¼ π=2 i.e., M is a contact CR-warped product submanifold,

(ii) The warping functionΦ is constant i.e., M is trivial Riemannian product pointwise semi-
slant submanifold.

In terms of Ricci curvature, we have the following classification

Theorem 4.5. Let �MðcÞ be a 2nþ 1-dimensional cosymplectic space form and
M ¼ NT 3 Φ Nθ be a warped product pointwise semi-slant submanifold with the equality
case of (3.21) holds. If the following holds

2q

Z
M

Ricð∇lnΦ;�ÞdV ¼ cpq sin2 θ �
X2p
i¼1

X2q
j¼1

��σμðei; ejÞ
��2
; (4.10)

then one of the following statement is true
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(i) The slant function θ ¼ π=2 i.e., M is a contact CR-warped product submanifold,

(ii) The warping function Φ is constant i.e., M is trivial Riemannian product pointwise
semi-slant submanifold.

Proof. For a connection ∇ on a smooth manifold M, there exists a tensor R of type (1, 3)
called the curvature tensor of the connection ∇ defined by

−∇U∇VW þ ∇V∇UW �∇½U ;V �W ¼ RðU ;VÞW (4.11)

for all U ;V ;W ∈TM.
For a warping function τ ¼ lnΦ, from (4.11), we have

∇
2dðτÞðV ;U ;W Þ �∇

2dðτÞðU ;V ;W Þ ¼ dðτÞRðU ;V ÞW : (4.12)

By the smoothness property of Φ on NT and ∇2
UV ¼ ∇U∇V −∇∇UV, then the curvature

tensor RðU ;V ÞW behaves like a derivative. Since dτ is closed, then it is easy to see that
∇2dðτÞðU ;V ;W Þ ¼ ∇2dðτÞðV ;U ;W Þ, for any vector fields U ;V ;W ∈TNT. Now, for a
local orthonormal frame fe1; e2; . . . ; e2pg on NT and for a fixed point t ∈NT such that
∇eiðejÞðtÞ ¼ 0, for 1≤ i; j≤ 2pþ 1. If we specify ∇eiðUÞðtÞ ¼ 0, for any U ∈TNT and taking
trace with respect to V and W in the following equation

∇
2dðτÞðV ;U ;W Þ ¼ ∇

2dðτÞðU ;V ;W Þ;
and utilizing (4.12), we haveXp

i¼1

�
∇

2dðτÞ�ðei; ej;UÞ ¼ −dðΔðτÞÞðUÞ þ Ricð∇;UÞ: (4.13)

Further solving left hand side, the above equation takes the form

divðHessτÞðUÞ þ dðΔðτÞÞðUÞ ¼ Ricð∇τ;UÞ; (4.14)

or

divðHessτÞ þ dðΔðτÞÞ ¼ Ricð∇τ;�Þ: (4.15)

AsM ¼ NT 3 ΦNθ is a compact orientable warped product submanifold, then on integrating

ΔðτÞ þ
Z
M

divðHessτÞdV ¼
Z
M

Ricð∇τ;�ÞdV ;

where dV is the volume element.
Since ΔΦ ¼ −divð∇ΦÞ [28] and R

M
divðUÞdV ¼ 0 for any U ∈TNT. So, it is easy to

conclude that
R
M
divðHessτÞdV ¼ 0. Then

ΔðτÞ ¼
Z
M

Ricð∇τ;�ÞdV : (4.16)

Utilizing above equation in (4.1), we have

X2p
i¼1

X2q
j¼1

��σμðei; ejÞ��2 ¼ cpq sin2 θ � 2qðcsc2 θ þ 2 cot2 θÞk∇lnΦk2

� 2q

Z
M

Ricð∇lnΦ;�ÞdV :

(4.17)
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By the assumption (4.10), we get

ðcos2 θ þ 2 cot2 θÞk∇lnΦk2 ¼ 0:

From the above equation it is evident that θ ¼ π=2 or the warping function Φ is constant,
which proves the theorem.

5. Conclusion
In this paper, by using Hopf’s Lemma, we obtained the characterizing inequalities for the
existence of warped product pointwise semi-slant submanifolds of cosymplectic space forms.
Moreover, we also worked out an estimation for the squared norm of the second fundamental
form in terms of the warping function and slant function. To strengthen our results, we
provided a non-trivial example of a warped product pointwise semi-slant submanifold in a
cosymplectic manifold. Moreover, some applications in the form of the Dirichlet energy of the
warping function are derived. The results obtained may be helpful in further studies on the
Dirichlet energy of smooth functions.
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