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Abstract

In this paper some characterizations for the existence of warped product pointwise semi-slant submanifolds of
cosymplectic space forms are obtained. Moreover, a sharp estimate for the squared norm of the second
fundamental form is investigated, the equality case is also discussed. By the application of derived inequality,
we compute an expression for Dirichlet energy of the involved warping function. Finally, we also proved some
classifications for these warped product submanifolds in terms of Ricci solitons and Ricci curvature. A non-
trivial example of these warped product submanifolds is provided.
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1. Introduction

The study of warped product manifolds has been a favourite topic in the field of geometry due
to its applications in Physics and relativistic theories [1]. Many basic solutions to Einstein
field equations are given by warped products [1]. The concept of modelling of space-time
near black holes uses the idea of warped product manifolds [2]. Schwartzschild space—time is
an example of warped product P X , S? where the base P = R X R* is a half plane » > 0and
fibre S? is the unit sphere. Under certain conditions, the Schwartzschild space-time becomes
black hole. A cosmological model to model the universe as a space-time known as
Robertson—Walker model is a warped product [3].
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One of the important task in Physics and Engineering is to find the Dirichlet energy of
smooth functions. Dirichlet energy is analogous to Kinetic energy. On a compact manifold M,
the Dirichlet energy of any smooth function A : M — R is given by

E®) =3 [ IVAdV.

where VA is the gradient of Aand dV is the volume element. It is obvious that £(A\) > 0 for any
smooth function A. We know that the manifolds of non-zero (constant) curvature cannot be
represented as a product manifold. So, considering the fact that a Riemannian product of
manifolds cannot has negative curvature, the idea of warped product of manifolds came into
existence. To construct the class of manifolds of negative or non-positive curvature, R. L.
Bishop and B. O’'Neill [4] introduced this idea of warped product manifolds. Warped product
manifolds (see definition in Section 2) are a generalized setting of product manifolds. Since
warping functions of the warped product manifolds are positive valued smooth functions, our
interest is to find the Dirichlet energy of these functions.

Some intrinsic properties of warped product manifolds were studied in [4]. Initial extrinsic
studies of warped product manifolds in the almost complex setting were performed by B. Y.
Chen [5,6] while obtaining some existence results for CR-submanifolds to be CR-warped
product submanifolds in Kaehler manifolds. On the other hand, in the almost contact settings
contact CR-warped product submanifolds were explored by Hasegawa et al. [7]. Many other
geometers have also explored warped product manifolds in contact settings and various
existence results have been obtained [8-11].

Warped product pointwise semi-slant submanifold is another generalized class of warped
product semi-slant submanifolds and contact CR-warped product submanifolds. In [12], Park
studied the warped product pointwise semi-slant warped product submanifolds. After that,
Ali and Ozel [13] extended this study in the setting of cosymplectic manifolds and they
obtained some optimal inequalities related to the second fundamental form and warping
function. Warped product pointwise semi-slant submanifolds for almost contact and almost
complex manifolds were explored in (see [14—16]).

On the other hand the Gradient Ricci soliton are extensively investigated in the theory of
relativity, physics as well as in the differential geometry. The classification results related to
Ricci Soliton and Gradient Ricci solitons with the warped product structure have been
established in [17-20]. Moreover, the Ricci curvature has a significant nature in Riemannian
geometry, for example Ricci flat is a solution of Einstein field equation on a Riemannian
manifold in which cosmological constant vanishes. More clearly, in the theory of general
relativity the Ricci tensor is correlated with Einstein’s field equation to study the material
contents of universe. So, in comparison with Riemannian curvature, the Ricci curvature is
more significant in the theory of relativity and physics.

In the present article, we study warped product pointwise semi-slant submanifolds of
cosymplectic space forms and obtain some interesting inequalities for warped product
pointwise semi-slant submanifolds. We estimate the squared norm of the second fundamental
form in terms of warping function and slant function. The equality case is discussed
accordingly. We explored some applications of equality case of the derived inequality. More
precisely, we calculate Dirichlet energy of the warping functions by using our derived
inequality. Finally, we obtain the classification of the warped product pointwise semi-slant
submanifolds admitting the gradient Ricci soliton, in terms of Ricci curvature and second
fundamental form, some existence results are also established.

The paper is organized as follows: Section 2 is devoted to basic definitions, formulae and
preliminary results which are required for the subsequent study of the paper. In Section 3, we
explore the existence of warped product pointwise semi-slant submanifolds in cosymplectic



space forms and prove our main results. A non-trivial example is given for the warped
product pointwise semi-slant submanifolds in a cosymplectic manifold. Using the derived
inequality, formulae for Dirichlet energy of warping function is obtained in Section 4.
Conclusions are presented in Section 5. Bibliography is given at the end of the paper.

2. Preliminaries ~ ~
A (2n 4 1)-dimensional C*-manifold M is said to have an almost contact structure if on M
there exist a tensor field ¥ of type (1, 1), a vector field yand a 1-form ¢ satisfying the following
properties [21]

5”2:—]"'5’7@'7, IP’,I:O7 fo¥ =0, g(’?) =1 2.1

The manifold M with the structure (¥, 5, ¢) is called abmost contact metric manifold. There
exists a Riemannian metric g on an almost contact metric manifold M, satisfying the
following

é’(Y) :g(Y7 77)7 g(’f’Y7 YIV) :g(Y’ V) - C(Y){(V), 2.2)

for all Y, V € TM where TM is the tangent bundle of M.
An almost contact metric structure (¥,#,¢,g) is said to be cosymplectic manifold if it
satisfies the following tensorial equation [21]

(Vy®)V =0, 23)

forany Y, V e T M, where V denotes the Riemannian connection of the metric g. Moreover,
for a cosymplectic manifold Ty = 0. ©.4)

A cosymplectic manifold M is said to be a cosymplectic space form [21] if it has constant
¥-holomorphic sectional curvature ¢ and is denoted by M (c). The curvature tensor R of
cosymplectic space form M (c) is given by

RV YU = {g(Vo, V)Ys = g(V1, V) Yo+ g(Yi, ¥ V)Y,
—g(Yy, YV)PY) 4 20(V1, PYo) PV + C(V)Z(V)Y, @D
(Y)Y +g(Y1, V)E(Yo)n — g(Ye, V) (YR}

for any vector fields Y7, Y5, V on M. ~

Let M be a submanifold of an almost contact metric manifold M with induced metric g.
The Riemannian connection V of M induces canonically the connections V and V+* on the
tangent bundle 7M and the normal bundle T+M of M respectively, then the Gauss and
Weingarten formulae are given by

Vy, Yo = Vy, Yo+ 0(11, Va), (2.6)
Vié = —AcY) + V£, @)

foreach Y1, Y2 € TM and & € T+ M, where oand A are the second fundamental form and the
shape operator respectively for the immersion of M into M, they verify the relation

g(0(Y1,Y3),8) = g(A: 11, 1), 2.8
where g denotes the Riemannian metric on M as well as the induced metric on M.
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For a submanifold M of a Riemannian manifold M, the equation of Codazzi is given by

(R(YV1,Y2) V)" = V30(Y1,V) = Vy,0(Y1, V) +6(Vy,Y1,V) = 6(Vy, Y2, V)
—I—G(Yh VYZV) - O'(Yg, Vyl V)

where (R(Y7, Y2) V)" denotes the normal component of the curvature tensor R(Y;, Y5)V.
If PY and FY denote the tangential and normal component of ¥'Y respectively for any
Y € TM, we can write
YY =PY +FY. 29
Similarly, for any & € T+ M, we write

PE = tE+ fE, (2.10)

where t£and f £are the tangential and normal components of ¥¢érespectively. Thus P (resp. f)
is 1-1 tensor field on TM (resp. T+M) and ¢ (resp. F) is a tangential (resp. normal) valued
1-form on T+M (resp. TM). The covariant derivatives of the tensor fields ¥, P and F are
defined as

(V)Y = Vi, #Y, — ¥V Y, 2.11)
(Vy,P)Yy = Vy,PY; — PVy, Y, 2.12)
(?ylF) Yy = VIL,IFYZ —FVyYs. 2.13)
From Egs. (2.3), (2.6), (2.7), (2.9) and (2.10), we have
(VYIP) Yg :AFngl + tG(Yh Yz) —g(Yl, Yz)i’] (214)
(vylF)Yg :fU(Yl,YZ)—O'(Yl,PYZ). (215)
The mean curvature vector H of M is given by
1 m
H=— s1€s)y
- ;a(e_ e;)
where 2 is the dimension of M and {ej, e, ...,e,} is a local orthonormal frame of vector
fields on M. The squared norm of the second fundamental form o is defined as
lol* = " g(olere),0(er e)). 2.16)

r,s=1
A submanifold M of M is said to be a totally geodesic submanifold if (Y1, Y2) = Oand totally
umbilical submanifold if 6(Y1, Y2) = g(Y1, Yo)H, for each Y1, Y, € TM.

Definition. (/22]). A submanifold M of an almost contact metric manifold M is said to be
slant submanifold if for any ye M and Y1 € T,M — (i), the angle between Y7 and ¥V is
constant. The constant angle 6 € [0, 7/2] is then called slant angle of M in M. If 6 = 0, the
submanifold is tnwariant submanifold and if @ = z/2 then it is anti-invariant submanifold. It
0+#0, /2, it is proper slant submanifold.

For slant submanifolds of the contact metric manifolds J. L. Cabrerizo et al. [22] proved the
following lemma.

Lemma 2.1. Let M be a submanifold of an almost contact metric manifold M such that
n€ TM, then M is a slant submanifold if and only if there exists a constant \ € |0, 1] such that



PP =M -¢®n), 217)

where ) = —cos” 6.

The notion of pointwise slant submanifolds was introduced by F. Etayo [23] as a natural
generalization of the slant submanifolds in the setting of almost Hermitian manifolds. Later,
B. Y. Chen and O. J. Garay [24] investigated pointwise slant submanifolds for almost
Hermitian manifolds and obtained some fundamental results. A step forward, K. S. Park [12]
extended the concept of pointwise slant submanifolds in almost contact metric manifolds.
Recently, Uddin and Al-Khalidi [25] modified the definition of pointwise slant submanifolds
for almost contact metric manifolds. More precisely, a submanifold M of an almost contact
metric manifold M is said to be pointwise slant submanifold if for any X € 7.M such that is
tangential to M, the angle 8(X) between ¥X and 7,M — {0} is independent of the choice of
non zero vector field X € T, M — {0}. In this case 6 is treated as the function on M, which is
called the slant function of the point wise slant function. Now, we have the following
characterizing theorem

Theorem 2.2. (/25]). Let M be a submanifold of an almost contact metric manifold M such
that n € TM. Then, M is pointwise slant if and only if

P? =cos’ (- + {®1) (2.18)

for some real valued function 8 on TM
Thus, one has the following consequences of the above formula.

g(PY1,PYy) = cos” 0[g(Y1, Ya) — £(Y1)¢(Ya)], 219
g(FYl,FYQ) = Sin2 g[g(Yl, Yz) — g(Yl)g(Yz)] (220)

for all Y7, Yo € TM.

Pointwise semi-slant submanifolds were defined and studied by Park [12] as a natural
generalization of contact CR-submanifolds in terms of slant function. Now, we have the
following definition

Definition. A submanifold M of an almost contact metric manifold M is said to be a
pointwise semi-slant submanifold if there exist two orthogonal complementary distributions
D and DY on M such that

(i) The tangent bundle 7M can be written as TM = D@ D’(n),
(i) The distribution D is invariant,

(iii) The distribution I)? is pointwise slant with a slant function 6.

As a generalization of the product manifolds, one can consider the warped product of
manifolds which are defined as follows.

Let (G, g¢,) and (C2,gc,) be the two Riemannian manifolds with g¢, and g, as their
Riemannian metrics resp. and @ be a positive differentiable function on (. Let
71 G X G -G, mp: G X G — (C; are the projection maps given by 7, (c1,¢2) = ¢; and
7c,(c1,c2) = co for every (c1,¢2) € Gy X Gy, The warped product M = G X ¢ G [4] is the
manifold C; X C; equipped with the Riemannian structure such that

gV, Ys) =g1(m+Y1,m+Ys) + (@°7I1)2g2(ﬂ2* Y1, w0 Y5),
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for all Y7, Y5 € TM, where 7;+ denotes the tangent map corresponding to z; for each 2. The
function @ is called the warping function of the warped product manifold. If the warping
function is constant then the warped product manifold M is said to be trivial warped product.

Let Y7 be a vector field on Gy and Y5 be a vector field on Cy, then from Lemma 7.3 of [3], we
have

Y@
Vyl Y, = Vy2 <37> Y, (221)

where V is the Levi-Civita connection on M. For a warped product M = C; X 4 Gy it is easy to
observe that

VyYe = VY1 = (Yiln @)Y, (2.22)
for Y1 TC and Y, € TC..
V@ is the gradient of @ and is defined as
gV, Y)=Yo, (2.23)
forall Y € TM.

Let M be an m-dimensional Riemannian manifold with the Riemannian metric g and let
{e1,e2,...,ey} be an orthogonal basis of 7" M. Then as a result of (2.23), we get

IVo|® = (e(@))”. (2.24)
i1
The Laplacian of & is defined by
Ad = Z{ (Velei)é — eield)}. (225)
i1

The Hessian tensor for a differentiable function @is symmetric covariant tensor of rank 2and
is defined as

AD = —traceH® (2.26)
or we can also write

Hess® = —A® (2.27)
Now, we state the Hopf's Lemma.
Hopf’s Lemma [26]. If M is an m-dimensional connected compact Riemannian manifold. If &
is a differentiable function on M s. t. A® > 0 everywhere on M (or A® <0 everywhere on M),
then @ is a constant function.
For a compact orientable Riemannian manifold M with or without boundary and as a
consequences of the integration theory of manifolds, we have [27]

/ AGAV =0, 229)
M
where @ is a function on M and dV is the volume element of M.

The Ricci soliton idea was given by Hamilton [28]. It is regarded as the natural generality

of Einstein metrics and they are the self similar solution of the Ricci flow & g(t) = —2Ric(t). If
there exists a smooth vector field ¥ such that the Ricci tensor meets the following condition

o1
Ric + Qﬁyg =aq, (2.29)

for any constant o, where Ly is the Lie derivative, then the Riemannian metric g on a complete
Riemannian manifold M is named as Ricci Soliton. If & < 0, a = 0 and a > 0 then the Ricci



soliton is called expanding, steady and Shrinking respectively. If we specify ¥ = V@ for a
smooth function @ defined on M, then g admits gradient Ricci soliton with the potential
function @. For this case (2.29) takes the form

Ric + V*® = ag. (2.30)

Since the Laplacian A and the gradient V2 are related as A = V2. Thus, in terms of Hessian
(2.29) can be expressed as

Ric = ag + Hess®. 2.31)

Note 2.1. If the potential function @ is constant on a gradient Ricci soliton, then
(M,g,V®,)\) is an Einstein manifold.

3. Warped product pointwise semi-slant submanifolds

In[12], K. S. Park, proved the existence of the warped product pointwise semi-slant warped
product submanifolds of the type N7 X Ny of cosymplectic manifolds and achieved the
following lemma

Lemma3.1. LetM = Nr X ¢ Nybe awarped product pointwise semi-slant submanifold of a
cosymplectic manifold M such thatn € TN, where Nt and Ny are invariant and pointwise
slant submanifolds of M, vespectively. Then

g(6(Y, W),FPZ) = —cos? 0Y In® g(W,Z) — &Y In dg(W, PZ), @3.1)

and
Se(WY W), FZ)=YIndg(W,Z) - ¥YY Indg (W,TZ), (3.2

foranyY € TNrand Z, W € T Np.

Now let M = N X ¢ Ny be a warped product pointwise semi-slant submanifold of a
cosymplectic manifold M and we consider the vector field 5 tangent to N7. If D is invariant
distribution and I is proper point wise slant distribution with the slant function 6, then the
tangent bundle 7M and T+M are decomposed (resp.) as follows

TM =Da D’ & (1),
TM = FI @ 4,

where s the orthogonal complementary distribution of FD in T+M. It is easy to see that uis
an invariant subbundle of 7+M with respect to ¥.

In view of the above direct decomposition, the second fundamental form ¢ can be written
as

o(Uy, Up) = oppo (Uh, Uz) + 0, (Un, Us), 33
for Uy, Uz € TM, where o5 (U, Uz) and 6, (U, Us) are the components of 6(Uy, Us) in the

normal sub-bundles FDY and u respectively. Moreover if {V1, Va,...,V,} be a local
orthonormal frame of vector fields of D?, then

q
o (U, Uz) = Yo" (Ur, Uy)FV, (34)
r=1
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where
o (Uy, Us) = csc? 0g(o(Un, Uy), FV,) (3.5)

To ensure the existence, we construct an example of a warped product pointwise semi-slant
submanifold of the type M = Nt X ¢ Ny in cosymplectic manifold with # tangent to Nr.

Example. Let M = C° X Rbe a Riemannian product of Euclidean space C° with line R
such that the structure vector field 7 = g 9 1form ¢ = dtand metric g = g1 + di?, where g1 is
the metric on Euclidean space. Then (M,¥,n,(,g) is a cosymplectic manifold. Let

¢ M ->M "hea point wise semi-slant submanifold such that 0 < #,v < 1is defined as
¢; = utanhx, e; =wvtanhx, es =wutanhy, e, =wvtanhy, e5 = usechux,
es = vsech x, e; = usech y, eg =wvsechy, eg =x, e=y, e;;1 =0.

The tangent space T M is spanned by the vector fields Xj, X, X3, X4, X5 such that

0 K] 0 0
X; = sechy — + sech x— + tanhy— + tanhx —,
Oes Oeg ey des

0 0 ] ]
X, =sech y— + sechx— + tanhy— + tanx —,
de; des Oes

6e1
0
Xo=pn=—
3 n atv
X *—Jrvtanhxijtutanxi—vsechxi—usechx
' e des des des de;’

0 ] 0 0 0
X5 = —+vtanhy—+utany—— vsechy—— usechy—
0e €10 de (] 3

Then DY = span{X;,, X5} is a pointwise slant distribution with slant function cos 1( e +1)
and invariant distribution D = span{Xj, X2, X3}. Thus M5 = Np X 4Ny is a non-trivial
warped product pointwise semi-slant submanifold of M with the warping
function ® = /(42 + v% + 1).

In this section, for convention, we denote by Y, X € TNy and V, U € TN as the vector
fields of respective tangent bundles of N7 and Np. At first, some initial results to be proved.
Lemma 3.2. Let Ny X ¢ Ny be a warped product pointwise semi-slant submanifold of a
cosymplectic manifold M. Then

Q) nind =0,

i) g(o(PY,V),FV)=

(iii) g(6(PY,V),¥o(Y,V)) = |lo.(Y, V)| + cos? 0(Yin ®)*|| V|,

forall Y € TNy andV € TNy, whereo, is they component of the second fundamental form o.

Proof. From (2.4), (2.6), and (2.22), it is easy to see that n/in @ = 0. Moreover, part (i) is a
particular case of (3.2). To prove part (iii), on making use of (2.6) and (2.3), we get

G(TY, V) = TG(Y, V) +¥YVyY —-Vy¥Y.



Now using (2.22), the above equation can be written as Submanifolds

c(PY.V)=¥(Y,V)+ Y d¥V —¥YIndV. of cosymplectic
space forms
Comparing the normal parts

o(PY,V)=¥6,(Y,V)+ Y In®dFV,

taking inner product with ¥ ¢(Y, V), we get 61
ge(?Y, V),¥o(Y,V)) = [lou(Y, VI + Yl dg(¥ o(Y, V), FV). 3.6)

Calculating the last term of above equation by using (2.6), (2.3), and (2.20) as follows
g(¥Po(Y,V),FV)=g(c(¥Y,V),FV)—sin®0Y ln® || V|J.

Utilizing part (ii), we get
g(Po(Y,V),FV) = cos’0Yln @||V |7,

using in (3.6), we get the required result.

Lemma 3.3. Let M = Nt X ¢ Ny be a warped product pointwise semi-slant submanifold of a
cosymplectic manifoldM. Then

2(6(Y,PV),FV) = —g(a(Y,V),FPV) = —cos* Y n®||V|)*
forall Y € TNy, V€ TN,.

Proof. From the part (ii) of Lemma 3.2, we may obtain
g(e(PY,V),FU) +g(6(PY,U),FV)=2Y Indg(V,U)

forany Y € TNrand V, U € TN,. Replacing U by PV e D’ and using the fact that V and PV
are orthogonal, we have

g(e(Y,PV),FV)=—-g(c(Y,V),FPV). (3.7)

By using (2.12), (2.14), and (2.22), we have
PYin®dV —YindPV =to(Y,V).

Now taking inner product with U € TNy in the above equation, we have
PYlnog(V,U)—Yindg(PV,U)=-g(c(Y,V),FU).

Interchanging V and U and subtracting the resultant from the above equation, we get
—g(e(Y,V),FU) +g(e(Y,U),FV)=2YIndg(V,PU).
In particular, replacing U by PV € I, the above equation yields
g(6(Y,V),FPV) —g(c(Y,PV),FV) = =2cos’0Y ln @|| VHZ. 3.8

Using (3.7), we obtain
g(o(Y,PV),FV) = —g(c(Y,V),FPV) = —cos*0Y In d5||V||2. O (3.9



AJMS Lemma 3.4. On a warped product pointwise semi-slant submanifold M = Nt X ¢ Ny of a
271 cosymplectic manifold M, we have

Z {Zg (Ve e"),Fe)g(o(e:, Pe), Fe)
i=1 [jk=1
—g(a(e;, ek),Fei)g(a(éei,Pek),Fej)] = —4qcos®0||Vin @ |,
62
where {ey=1p,e1,0s,..., ¢, Per, Pes, ..., We,} and {e',¢?,... 7, e"t = secOPe!, ¢12 =
secOPé?, . .., e% = secOPe?} are the frames of the orthonormal vector fields on 7' Ny and
T Ny respectively.

Proof. First, we expand the left hand term in the following way

g o(¥e,e"),Fé)g(o(e;, Pe), Fe)
_ (e o)

Jk=1

=1

q
+> g(o(Pei,e’™), Fe))g(o(e, Pe”q),Fej)}

JJ 2
[ g(o(Pe;,e’),Fe’)g(o(e;, Pe’), Fe’)

Jj=

—

= 1
q
+sec? 0 Zg(a(‘[’ei, ¢’),FPe’\g(c(e;, Pe’), FPe)

=1

- zq:g(a(‘l’ei,Pej),Fej)g(a(e,-, ej),Fef)] .

iz
Using part (i) of Lemmas 3.2, 3.3 and utilizing (2.24), we get

i [ig(a(‘lfel-, e*),Fe’)g(o(e;, Pe*), Fe’)

=1 | ji=1

»
= [-2q cos” O(eiln @) — 2q cos’ (¥ e;ln @)’

=1

= —2q cos’ 0||Vin ®||*.



Replacing e; by ¥e; in above equation, we get Submanifolds

b [ 2 _ ‘ of cosymplectic
Z Zg o(ei, "), Fe'\g(o(¥e;, Pe), Fe’) | = 2qcos’ 6| Vin . space forms
1 [jk=1

Subtracting the above two findings, we get the required result. [
Now, we prove the following characterization. 63

Theorem 3.5. Let M = Nt X ¢ Ny be a warped product pointwise semi-slant submanifold
of a cosymplectic space form M c) such that Nt is a compact submanifold. Then M is a
Riemannian product submanifold if the following inequalities hold

2 2q

o, (e, €) H2 <cpgsin® @ — 2g(cos’ 6 + 2cos” 0) || Vin @ |
P

and

b 2q
> Zg 0,(¥e:,é),0,(e;, Pé)) >0,

=1 j=1
where 6, denotes the component of oin i, and (2p + 1) and 2q are the dimensions of Nr, and N,
respectively.
Proof. Forany unitvectorfields Y € T Nrand V € T Ny, using (2.1), (2.5), and (2.20), we have
R(YY, ¥YY, V, FV) = —%sinZHHYHZHVHZ (310)

On the other hand by Codazzi equation
R(Y,¥Y,V,FV) =g(.(Vyo(¥Y,V),FV) —g(Vyyo(Y,V),FV)
+2(o(Y,Vey V), FV) —g(6(PY,VyV),FV) (3.11)
—g(o(VyPY, V), FV)+ g(6(VeyY,V),FV).
Now, we compute the values of the terms involved in (3.11). First, we have
g(Vyo(YY,V),FV)=Yg(o(YY,V),FV)—g(c(YY,V),VLFV).
Using the part (i) of Lemma 3.2 in the above equation, we get
g(Vie(PY, V), FV) = Y ino||V|* + 2(Yln ®)*|| V|

(3.12)
—g(c(PY, V), VyFV).

We calculate the last term of (3.12) using (2.9) as follows
g(a(?’Y, V), V3FV) =g(a(PY,V),Vy(PV — PV)).

By the use of (2.6) and (2.11) the above equation takes the form
g(o(PY, V), V3FV) =g(a(YY, V), (Vy¥)V + ¥ Vy V)
7g(0'(']’Y’ V)7 O'(Y,PV))

Using (2.3), (2.6), (2.22), part (ii), and (iii) of Lemma 3.2, we obtain

g(c(PY, V), VEFV) = (Y In®@)*(1 + cos® 0) || V||* + ||o, (Y, V)|

313
—g(e(PY,V),0(Y,PV)).
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27,1 2(VEa(PY,V),FV) = Y’ ®||V|* + (Y o &)’sin®0| V||

3.14
~ou(Y, V)I* +(a(¥Y.V),0(Y,PV)). e

Similarly, we can write
64 g(Viyo(Y, V), FV) = =(PY i ®||V|]* — (PY ln ®)’sin0|| V|*
Hlou(PY, V)| +2(6(Y,V),0(#Y,PV)).

(3.15)

From the part (ii) of Lemma 3.2, we have
gAwV,PY) =Y Ino| V|
Replacing Y by VyY (using the totally geodesicness of Ny, VyY € T Np) in the above
equation, we have
SAWV,¥VyY) = VyY no|| V|,

By using (2.6), the above equation takes the form
2Am V,¥VyY —¥o(Y,Y)) = Vy Y Ino|| V|

By using the fact that the first factor N7 is totally geodesic in M, it can be easily verified that
o(11,Y),ep, forall Y1, Yo € TN7. Using this and (2.11) in the above equation, we get

g(a(Vy¥Y,V),FV) = VyYino|| V| (3.16)
Similarly, we can write
2(6(VeyY,V),FV) = -V, ¥Y In®||V|. 3.17)
By use of (2.22) and the part (i) of Lemma 3.2, we have
g(6(PY,VyV),FV) = (Y n®)*| V| (319)
and
2(6(Y, Vyy V), FV) = —(YYln &)*||V|. (3.19)

Substituting values from (3.10), (3.14), (3.15), (3.16), (3.17), (3.18), and (3.19) in (3.11), we obtain

—%sin29||Y||2HV||2 =Yo|V|* + (PY) | V|
—(Y In®)*cos’0||Y || — (PY In ®)*cos?0||V|)*
—[lo, (Y, V)" = llou(PY, V)|
—VyYn@||V|[* — Ve ¥Y || V|
+g(G(IPY7 V)76(Y7PV)) —g(o‘(Y, V),G(Y’Y,PV))
Let {eo =n,e1,e2,...,6p, 651 = Per,ep10 = Peg,... 03 = Pe,} be the orthonormal
frame on T Ny and {e',¢%,...,e%,e""" = secOPe', 7> = secOPe’, ... e = secOPe} be

an orthonormal frame on 7" Ny. Now, using the decomposition (3.3), formula (3.5), (2.6) and



(2.3), the above equation takes the form Submanifolds

“Ssin?0| Y| VIE = Y2l d||VE + (PY Ve || V| of cosymplectic
2 space forms

—(YIn@)’cos’0||V||* — (¥ Y In @) ’cos’0|| V||

oY, V)I* = llou(PY, V)|

, , 65
—VyYln@||V||" — Vey ¥ Yin @|| V||

+CSCZGZZq[g(a(¥’Y, V),FV)g(o(X,PV),FV})
—g(o(¥Y,V),FV))g(a(#Y,PV),FV))]| Vil
+2g(0,(#Y, V), 0,(Y,PV)).

Now summing the above equation overi = 1,2, ...,pandj = 1,2, ... 2¢q, using (2.24), (2.25)
and part (iii) of Lemma 3.2, one can get

2p 2q )
2qA(In @) = cpgsin®0 — 2q cos”0||Vin &|* = > Y ||<7,4(el-,e’)||2
s o (3.20)
—4q cot’0||Vin ®||* + ZZ Zg(%(y’eh ¢),0,(e;, P2)).
F
From (3.20) if

2p 2q
> loutes e’)HZ <cpq sin® 0 — 2q(cos® @ + 2cot? 0) || Vin @|°

=1 j=1

and

P
> > a(o(¥an)on(e, Pe) 20,

=1 j=1

then Aln @ >0, so by the Hopf's Lemma, /# & is constant that mean @& is constant, which
proves the theorem. [J

In the next theorem, we obtain the squared norm of the second fundamental form in terms
of the warping function and slant function.

Theorem 3.6. Let M(c) be a(2n+ 1)-dimensional cosymplectic space form and
M = Nt X ¢ Ny be an m-dimensional warped product pointwise semu-slant submanifold
such that Nt is a (2p + 1)-dimensional invariant submanifold and Ny be a 2q-dimensional
proper pointwise slant submam'fold of M(c). If

ZZg (Pe;,é),0(e;, Pe)) >0,

=1 j=1

then
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271 (@) The squared norm of the second fundamental form o satisfies
lo|* > cpgsin® @ + 2q sin” 0|| Vin @|* — 2qA(In ®). (3.21)

(1) The equality sign of (3.21) holds identically if and only if

66 (@) Ny is totally geodesic invariant submanifold of M (c). Hence N is a cosymplectic
space form.

(b) Ny is totally umbilical submanifolds of M (c).
© 32, 57 g(0(¥ei, ), o(ei, Pe)) =0

Proof. From (3.20), we have

2p 2q
\[ou(er,@)||" = cpg sin® 0 — 2g(cos® 6 + 2 cot? 0)|[Vin ®|* — 2gA(In ®).  (3.22)

=1 =1
For the orthonormal frames {e) =1, e1,¢e2,...,¢5, €511 = ¥e1,€p12 = Pea, ..., 00 = Ve, }
and {e',¢?,... e, secOPe', secOPe’, . . . secOPe’}, in view of the formulae (3.4), (3.5), part

(1) of Lemma 3.2, we get

2 2q . 2% 2
\|orn, (e, )| :ZZ csc0g(o (e, &), Fe')?
=0 j=1 i=0 k=

2p 2q
= CSCZG’Z [Zg(a(ei,ei),Fe’ ?

=0 j=1

+ Z o(e;,e 2

J#k=1

= CSCZGZ {Zq eiln ®)* + sec 62{ o(e;,¢),FPe) +g(a(el~,Pei),Fe7)2} .

Further using Lemma 3.3 and (2.24), the above equation reduced to
2 2q

> Z||amg(el,¢)|| = 2g¢sc? 0| Vin ®||* + 2q cot? 0| Vin d|)*. (323

=0 j=1

From (3.22), (3.23) we get the required inequality.
To prove the part (ii), let 6’ be the second fundamental form for the immersion of Ny in M.
Then for any U, V € TNy and Y € TNy, using Gauss formula, we have

g(a'(U,V),V)=g(VuV,Y) = -Yinog(U,V).

Using (2.23), we have
g(d(U,V),Y)=-g(U,V)g(Vin®,Y),

or
(U, V) = —g(U, V)Vin . (3.24)



If the equality sign of (3.21) holds identically, then we obtain
6(D,D)=0, oD’ D) =0, (3.25)
g(o,(¥D,D%, o6,D,PD")) =0. (3.26)

The first condition of (3.25) implies that N7 is totally geodesic submanifold in M. On the other
hand it is easy to see that g(o(Y1,¥ Y2),FV) =0, forall Y1,Y> € TN, V € TN, It
follows that N7 is totally geodesic in M (c) and hence is a cosymplectic space form. Moreover,
the second condition of (3.25) together with (3.24) implies that N, is a totally umbilical
submanifold.

This proves the theorem. [

4. Some applications

Theorem 3.6 motivates us to obtain formulae to calculate the Dirichlet energy involving
warping function @. We denote by E(®) the Dirichlet energy of a function @. For a compact
orientable warped product pointwise semi-slant submanifold M =Nr X Ny in a
cosymplectic space form M (c), we compute the Dirichlet energy of the warping function @
in the following theorem.

Theorem 4.1. Let M = Nt X ¢ Ny be a compact ovientable warped product pointwise semi-
slant submanifold of a cosymplectic space form M (c), such that Ny be a (2p + 1)-dimensional
invariant submanifold tangent to the structure vector field n and Ny be a 2q-dimensional
pointwise slant submanifold of M (c). Then for each x € Ny, the Divichlet energies of the warping
Sfunction satisfy the following

1 2 cp
End) = ——— dV +— Vol(N.
() = /NW}HUH 2 Vol

if and only if
() Nris totally geodesic invariant submanifold of M (c) and is a cosymplectic space form,
(i) Ny is totally wmbilical submanifolds of M (c),
(i) 37 ) 32 g(0(¥ e, ), o(er, Pe)) =,

Proof. On integrating the equality case of the inequality (3.21) and using the definition of
Dirichlet energy and (2.28), we get the required result. [

If & = 7/2, then the compact orientable warped product pointwise semi-slant submanifolds
become contact CR-warped product submanifolds. The following can be deduced from
Theorem 4.1.

Corollary 4.2. Let M = Nt X o Ny be a compact orientable contact CR-warped product
submanifold of a cosymplectic space form M (c), such that Nt be a (2p + 1)-dimensional
invariant submanifold tangent to the structure vector field nand Ny be an 2q-dimensional anti-
invariant submanifold of M (c). Then for each x € Ny, we have

E(no) :%/N { }||a|\2dV+%Vol(NT)
X {x

if and only if

Submanifolds
of cosymplectic
space forms
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(i) Nris totally geodesic invariant submanifold of M (c) and is a cosymplectic space form,
(i) N is a totally umbilical anti-invariant submanifold of M (c).

If the equality sign of (3.21) holds, then
2% 2q

ZZHG,, ¢, ¢ H = cpgsin® @ — 2q(csc? @ + 2cot? )| Vin ®|* — 2gAln . (4.1)

=1 j=1

Since, the Laplacian of a smooth function @ is the trace of the Hessian of the function. In terms
of Hessian, (4.1) can be written as follows

2p 2q
l|ou(ei,é) HZ = cpgsin®d — 2q(csc?6 + 2cot’6)||Vin |
= 4.2

»
Z [Hess"* (¢;,¢;) + Hess"* (e, ¥e;)|
=1

Now, we have the following classification theorem for the warped product pointwise semi-
slant submanifolds admitting the gradient Ricci soliton satisfying the equality case of (3.21).

Theorem 4.3. Let M(c) be a 2n+1-dimensional cosymplectic space form and
M = N7 X Ny be a warped product pointwise semi-slant submanifold admitting a
shrinking gradient Ricci soliton. If

» % - %
|ouei,@)||” + 4pq = cpgsin® 6 + 2q ZRic(ei, e), .3)
=1 j=1 i=1

then one of the following is true
(1) The slant function 0 = r/21.e., M s a contact CR-warped product submanifold,

() The warping function ® is constant i.e., M is trivial Riemannian product pointwise
semi-slant submanifold.

Proof. Suppose that warped product pointwise semi-slant submanifold M = N7 X Ny
satisfies the basic equation of the Ricci soliton, such that the potential function 7 = In &, then

Ric(X,Y) =M (X,Y) 4+ Hess" (X, Y), 4.4)
for all X,Y € TNy. Considering that {ej,e,...,ey,€p41 = VPeu,...,e9 = ¥e,} be an

orthonormal frame of the vector fields on 7Ny . Now, taking summation overi = 1,2,...,p
for X = Y in (4.4), we have

b b
ZRic(e,-, e)=M++ X:Hess’(ei7 e). 4.5)

=1 =1

Replacing ¢; by ¥e; in above equation, we get

» b
ZRic(‘l’eZ», Ye)) =M+ + ZHessT('{’el-, Ye,). 4.6)

i=1 =1



From (4.5) and (4.6), we have Submanifolds

2 b of cosymplectic
ZRic(e,-, ) =2\ + + Z(Hess’(el-, ¢;) + Hess*(We;, Pe;)). @.7) space forms
i1 i1
By the assumption that the equality case of (3.21) holds, then by (4.2)
5 . 69

Z Z |ou(e:@)||” = gsm 6 — (cos’ 0 + 2 cot’ 0)||Vin @|*

11]1

, 4.8
»

+ ZRic(e,-, e;) — 2\p,
or

Haﬂ ¢, e | = cpgsin® @ — 2q(cos® 6 + 2 cot? 0) || Vin @ ||

=1 j=1
2p
+ 2q ZRic(el-, ;) — 4pgh
=1
By the assumption (4.3), we get
(cos? 0 + 2 cot’ 9) || Vin @||* = 0.
From the last equation it is evident that = /2 or the warping function is constant, which
proves the theorem.

If the submanifold M = Ny X ¢ Ny admits the steady gradient Ricci soliton, then from
last theorem, it is easy to conclude the following

Theorem 4.4. Let M(c) be a 2n+1-dimensional cosymplectic space form and
M = Nt X ¢ Ny be a warped product pointwise semi-slant submanifold admitting a steady
gradient Ricci soliton. [f

2 _ %p
Z ||(r,4(el-,ef)||2 = cpgsin®0 — 2 ZRz'c(el-, ¢), 4.9)
i=1 j=1 i=1
then one of the following is true
(i) The slant function @ = n/21.e., M is a contact CR-warped product submanifold,

(1) The warping function @ 1is constant i.e., M is trivial Riemannian product pointwise semi-
slant submanifold.

In terms of Ricci curvature, we have the following classification

Theorem 4.5. Let M(c) be a 2n+ l-dimensional cosymplectic space form and
M = N7 X ¢ Ny be a warped product pointwise semi-slant submanifold with the equality
case of (3.21) holds. If the following holds

2 2
2q/ Ric(Vin®,—)dV = cpgsin® 6 — Z Z EACKD)
M

=1 j=1

? 4.10)

then one of the following statement is true
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() The slant function 0 = n/21.e., M is a contact CR-warped product submanifold,

(1) The warping function ® is constant i.e., M is trivial Riemannian product pointwise
semi-slant submanifold.

Proof. For a connection V on a smooth manifold M, there exists a tensor R of type (1, 3)
called the curvature tensor of the connection V defined by

—VyVyW +Vy VW — V[Uy]WIR(U, V)W (4.11)

forallU,V,WeTM.
For a warping function 7 = i @, from (4.11), we have

V2d(0)(V,U, W) — V2d(z)(U, V, W) = d(t)R(U, V)W. 4.12)

By the smoothness property of @ on Ny and V%, = Vi Vy — Vy, 1, then the curvature
tensor R(U, V)W behaves like a derivative. Since dr is closed, then it is easy to see that
V2d(t)(U,V, W) = V%d(z)(V,U, W), for any vector fields U, V, W € TNr. Now, for a
local orthonormal frame {ej, ey, ...,e3} on Ny and for a fixed point { €Ny such that
V.i(ej)(t) = 0, for 1 <i,j <2p + 1. If we specify V,;(U)(¢) = 0, for any U € TN and taking
trace with respect to ¥ and W in the following equation

V(o) (V,U,W) = Vid(z)(U,V, W),

and utilizing (4.12), we have

y (V*d(1))(ei,¢;, U) = —d(A(2))(U) + Ric(V, U). @.13)

=1
Further solving left hand side, the above equation takes the form

div(Hess")(U) + d(A(r))(U) = Ric(Vz, U), (4.14)

or
div(Hess®) + d(A(7)) = Ric(Vz, —). (4.15)

As M = Ny X ¢Npis a compact orientable warped product submanifold, then on integrating

A(D)+ / div(Hess")dV — / Ric(Ve, )V,
M M

where dV is the volume element.
Since A® = —div(V®)[28] and [, div(U)dV = 0 for any U € TNr. So, it is easy to
conclude that [y, div(Hess")dV = 0. Then

Alr) = /M Ric(Ve, —)dV. (4.16)

Utilizing above equation in (4.1), we have
2p 2q -
|ou(ei@)||” = cpgsin®@ — 2q(csc? @ + 2 cot? 0) || Vin @ |
i=1 j=1 417

2 / Ric(Vin®, —)dV.
M



By the assumption (4.10), we get
(cos? 6 + 2 cot? 0) || Vin &||* = 0.

From the above equation it is evident that 8 = z/2 or the warping function @ is constant,
which proves the theorem.

5. Conclusion

In this paper, by using Hopf’s Lemma, we obtained the characterizing inequalities for the
existence of warped product pointwise semi-slant submanifolds of cosymplectic space forms.
Moreover, we also worked out an estimation for the squared norm of the second fundamental
form in terms of the warping function and slant function. To strengthen our results, we
provided a non-trivial example of a warped product pointwise semi-slant submanifold in a
cosymplectic manifold. Moreover, some applications in the form of the Dirichlet energy of the
warping function are derived. The results obtained may be helpful in further studies on the
Dirichlet energy of smooth functions.
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