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Abstract

Let E be an elliptic curve with Weierstrass form y> = x° — px, where p is a prime number and let E[m] be its
m-torsion subgroup. Let p1 = (x1,1) and ps = (x2,¥2) be a basis for Efm], then we prove that
Q(Em]) = Q(x1,%2,&,,,51) in general. We also find all the generators and degrees of the extensions
Q(Em])/Qform =3andm = 4.
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1. Introduction

Let E be an elliptic curve with Weierstrass form y> = x° — px, where p is a prime number. Let
m be a positive number, we denote by E[m] the m -torsion subgroup of E, by Q(E[m]) the
number field generated by the coordinates of the 7 -torsion points of £, and by Q(E,[m]) the
number field generated by the abscissas of 72 -torsion points of £. Mazur proves the 7 -torsion
subgroup is isomorphic to one of 15 finite groups [5]. Let p1 = (x1,¥1) andps = (x2,y2) be two
points in £ forming a basis of E[m], then Q(E[m]) = Q(x1, x2,¥1,¥2). By Artin’s primitive
element theorem the extension Q(x1,¥2,¥1,%2)/Q is monogeneous and we can find unique
generator for Q(x1, 42, y1,¥2)/Q by combining the above coordinates. As usual, we denote by
U, the group of mth roots of unity and by ¢,, one of its generators. By Weil pairing, we have
&, € Q(E[m]), so Q(&,,) € Q(E[m]) for all m [5]. In [3] Paladino gives a family of elliptic
curves such that Q(E[3]) = Q(&;) and in [4] finds the number fields generated by the 4th
torsion points, degrees and Galois groups of an elliptic curve y* = (x—a)(x —f)(x —7)
where a, 8,y €Q, and a # f+#y. In [1] Bandini and Paladino determine the number fields
generated by the 3-torsion points, degrees and Galois groups of an elliptic curve y* = x° + ¢
where ¢ € Q*. In [2] the result of Brau and Jones says that the rational points on the modular
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curve of level 6 yield elliptic curve E satisfying the given containment. In the first part of this
paper we prove &, € Q(E,[m]) and Q(E[m]) = Q(x1, %2, ,,,¥1) for all m. In the second part
of this paper we find the number fields of torsion points E[m] for cases m = 3, 4, extensions
and degrees. These theorems have applications in local-global divisibility problem [4] and
modular curves [2].

2. Generators for Q(E[m))

Letp; = (x1,51)and ps = (x2,¥2) form a basis of E[m]. We have Q(E[m]) = Q(x1, 2,31, ¥2)-
We will denote by L the field Q(x1, x2) and by K the field Q(E[m]). Suppose (x3,¥3) be the
coordinates of the point p5 = p1 + p2and (x4, y4) be the coordinates of the point py = p1 — po.
In next theorem we will prove &,, € Q(Ey[m]) for all m.

Lemma 2.1. Let {P, Q} be a basis for E[m). Then e,,(P, Q) is a primitive mih root of unity.

Proof. We know that there are S, T € E[m] such that e,,(S, T') = £, a primitive mth root of
unity. Write S = aP + bQand T = cP + dQ. Then the antisymmetry properties of the Weil
pairing imply that

gm = em(S: T) = em (Pa Q)ﬂd—bc.
Since e, (P, @) is an mth root of unity and a power of it is a primitive mth root of unity, it
follows that e,, (P, ) is a primitive mth root of unity. [

Theorem 2.2. Let {p1, 2} be a basis for Elm), let p3s = p1 + p2 and py = p1 — po, and write
pi = (%;,5;). Then

Q(gm) c Q(X17XQ,X3,X4) < Q(El[m})

Proof. The second inclusion is by the definition of Q(E,[m]). For the first inclusion. Let o be
an automorphism of Q(E[m]) that fixes Q(x1, 42, ¥3, %4). Then o(y;) = +y; since a(ylz) =2

The equation l

(2 — x3) (1 — %2)°
4

Y2 =

shows that 6(y1y2) = y1¥2. This means that either o(y;) = y; for i = 1,2, or 6(y;) = —y; for
i =1,2. These mean that either o(p;) = p; for 1 = 1,2, or o(p;) = —p; for i = 1,2. In the
first case,

em(Pl,Pz)“ = em((f(f?l), 0(172)) = em(phpZ)-

In the second case,
en(P1,02)" = em(o(D1),0(b2)) = em(—p1, —D2) = em(pr,D2).

Since e,, (1, p2) is a primitive mth root of unity, we find that Q(&,,) € Q(x1, ¥2,x3,44). [
We know that Q(x1,x2,¥1,52) = Q(%1, 42,51,5152). In next theorem we will prove that
Q(E[m]) is equal to the field Q(x1,x2) by adding &,, and y;.

Theorem 2.3. Q(E[m]) = Q(x1, %2, &y, 31)-

Proof. We have Q(x1,42,&,,,51,¥2) = Q»gE [m]). If we do not have the equality in the
theorem, then yo & Q(x1, %2, &,,, 31)- Since y; is in this field, there is an automorphism ¢ such
that 6(y2) = — and o is the identity on Q(x1, X2, &,,,31). Then



en(p1.02) = en(br,52)° = en(6(01), 6(52)) = en (b1, —b2) = em(pr,p2) ™" Fields of a

special elliptic

This implies that e,, (p1, p2)2 = 1. Since ¢,,(p1, p2) is a primitive mth root of unity, we must curve
have m = 2. But then y; = y» = 0, in which case the theorem is true. [

3. Number fields Q(E[m)) for cases m = 3, 4
It is well known that the abscissas of the 3-torsion points of an elliptic curve y2 = x° —px are
the roots of the polynomial

229

@y = 3" — 6px” — p*,

then the roots &1, X3, 43, X3 of ¢ are:

oy T [ [y
X = P—ﬁyﬁz— P—7§7x3= P+7§7x4=— P+%-

In next theorems we will determine the field generated by 3 and 4 torsion points.

Theorem 3.1. Let E be an elliptic curve with Weierstrass form E : y* = x3 — px, where pis a
prime number. Then

QIE[]) =Q (1 /D — 3%#53) with [Q(E:[3]) : Q] =8,

2p\/ 2pV3 =3
QEB) = ¢ @zs with [Q(E[S]) : Q] = 16.

Proof. We have Q(i1, %2, X3, 1) = Q(1,43). On the other hand we have

aa@—\/(p—j—%)(wj—’g) -T2,

so Q(#1,43) = Q(#1, 2143) = Q(41,&3) = Q(«/P—%,&)-

We have

[, _ 2 ol — [y 20 . ). ()0
{Q( P—%fs) Q} = [Q( b \/§7§3> 'Q(§3):| [Q(&) = Q.

Puta = p—% , then
f(x) = min(a, Q(&)) = 3a* + 6pa” —p* =0

is irreducible over Q(&;), because the roots of f(x) are %1, %2, 3, X1. They are irrational, so
either f(x) is irreducible or it has a quadratic factor that has x; and some other ; as roots.
Since 5142 & Q(&;), the other root is not X. Suppose the other root is ¥3 or £;. Then (using #3)

%p(sw—_g):(aam)z
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is a square in Q(&;). But its norm to Q i

Therefore, there is no quadratic factor and f () is irreducible. So {Q (, /p— 3—% , 53) : Q(fg):| =4
It is easy to verify that [Q(&;) : Q] = 2. Hence

Q)= ) —21 : =4 e l=
[Q(Ex[3]~Q)}{Q<1/p \/§,§3>.Q}4 2-=8.

By Theorem 2.2 we proved that Q(E[3]) = Q(x1, 2, &3,51) = Q(41, &3,51), where &1 = — %2,
Asi° = #° - pi, then

’ 26\/2pV/3 - 3
ﬁpxi:« pi’%) p( p\z/%): W

and [Q(x7, &, ) : Q(47, &)] = 2. We found in previous case that [Q(x3, &) : Q] = 8
Hence

[QER]) : Q) = [Q(F, &3,51) : Q] = [Q(x1,&,51) : Q31,£)][Q(F1,83) : Q] =208 =16. [

N =

It is well known that the abscissas of the 4-torsion points of an elliptic curve y? = x> —px are
the roots of the polynomial

@, = 15 — 5pat — 5p*% + p°,

NN N N A~

xl :l\/_7 2:+\/E+\/2‘7 5‘.\3:71.\/‘57
-@:\/ﬁ_\/z_v -9?5:_\/[)—’_\/2—-7 -7?6:_\/1;_\/2_5'

Theorem 3.2. Let E be an elliptic curve with Weierstrass formy? = x° —px, where pis a prime
number. Then

QE[4]) = { Q6 V2,vh) withQ(E[4]) : Q] =8 if p#2,
Q(la\/é) with[Q(Ex[4]) : Q] =4 if p=2.
QEMH) = {Q(l V2,VD) withQ(E[M)) : Q] =16 if p#2,
6, V8) with(Q(E[4]) : Q] =8 if p=2.

Proof. The points of exact order 4 of y2 = x° —px are +p1, +p2, +h3, +pa, +D5, +bg, Where

plz(i\/ﬁ,—i‘/ﬁwé/ﬁ), pz:(\/ﬁﬂ/ﬁ,%/ﬁﬂ@é/ﬁ),
pgz(—i\/ﬁ,—é/z?—ié/ﬁ>7 p4=(¢§—ﬂ,—2</ﬁ+ﬂﬁ>,

2p 2 2p 2p
=\~ 2p, + ) = |- 2p, - .
(o B i) me (B i)

We have:



PN N N PN

= Qv VB + V2, ~iVh. Vb — V2. ~Vh + V2. ~V2 ~ /%)
~a(i,v2,vp)

with [Q(E,[4]) : Q] =8if p#2and [Q(E,[4]) : Q] =4ifp=2 O
Let {p1,p2} be a basis for E[4], then

Q(E[A]) = Q(x1, %2,51,52)

:Q<i\/§7\/]) +\/§13,—{/E+z‘\"/1§,2‘{/1§+\/§\1/5)
s
with [Q(E[4]) : Q] = 16if p # 2and [Q(E[4]) : Q] = [QG, VB)] = 8ifp=2. [
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