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Abstract

The initial value problem for a semi-linear high-order heat equation is investigated. In the focusing case, global
well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of
solutions are discussed via the potential well method.
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1. Introduction
Consider the Cauchy problem for a high-order nonlinear heat equation

{ZH—(—A)'%—#CM- elul’u a1
Uji=0| = Uo-

Higher-order semi-linear and quasilinear diffusion operators occur in applications in thin
film theory, non-linear diffusion and lubrication theory, flame and wave propagation, and
phase transition at critical Lifschitz points and bistable systems (e.g., the Kuramoto—
Sivashinsky equation and the extended Fisher—-Kolmogorov equation). See models and
references [16].

Here and hereafter £ > 1, ce{0, 1}, e = +1, u := u(t, x) is a real-valued function of the

variables (¢, x) €R X R” for some integer ne|( 2k, Zkélflk)) The non-linearity satisfies

k<p<p’:=p,—1:= 22 The k- Laplacian operator stands for
(~4) = (~a)[-A], (A =T,
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The energy space C([0, T], H*(R")) is naturally adapted to study the high-order heat
problem (1.1) using, with a minimal regularity, the following energy identity

OES(t) == 0,E°(u(t))

=0, [ /R ” @yvku(t)yz + §|u(t)\2 - ﬁm(tﬂl“’)dx}
- —/Wm(t, x)[Pdx

If € = —1, the energy is positive and (1.1) is said to be defocusing. For ¢ = 1, the energy no
longer allows a control of the H* norm of an eventual solution. In such a case, (1.1) is focusing.
In the classical case & = 1, Eq. (1.1) has been extensively studied in the scale of Lebesgue

spaces L?(R"). The critical index ¢, := @ gives the following three different regimes.

(1) Sub-critical case g > g, > 1: Weissler [18] proved local well-posedness in C([0, 7);
LYR")NL2.(]0, T]; L2 (R")). Then Brezis—Cazenave [3] showed unconditional
uniqueness.

(2) Critical case g = g.: There are two cases
(@ ¢q; > p+ 1:local well-posedness holds [3,18];
®) g =q. =p + 1. Weissler [19] proved a conditional well-posedness.

(3) Super-critical case g < ¢, There is no solution in any reasonable weak sense
[3,18,19]. Moreover, uniqueness is lost [10] for the initial data #y = 0 and for
1+1lcp<cniz

See [11] for exponential type non-linearity in two space dimensions.

This manuscript seems to be one of few works treating well-posedness issues of the
nonlinear high-order heat equation in the energy space [2,89,17].

The purpose of this paper is two-fold. First, global well-posedness and exponential
decay are established in the defocusing case. Second, in the focusing sign, global and
non global existence of solutions are discussed via potential-well method. Comparing
with the classical case, we need to operate with various modification due to the high-
order Laplacian.

The rest of the paper is organized as follows. Section 2 is devoted to the main results and
some tools needed in the sequel. Section 3 deals with local well-posedness of (1.1). Section 4
contains a proof of global existence of solutions in the critical case with small data. Section 5
deals with the associated stationary problem. Section 6 is about global and non global
existence of solutions with data in some stable sets in the spirit of Payne and Sattinger [15]. In
the last one, the existence of infinitely many non global solutions near the ground state is
proved.

We mention that C will be used to denote a constant which may vary from line to line.
A<B means that A<CB for some absolute constant C. For simplicity, denote
[ rdx = [ -dx, [? :=[’(R") is the Lebesgue space endowed with the norm

Il == 1[Il and [|-|| :== |||l The classical Sobolev space is Hk = (I—A)%Lp and

HF* := H*? is the energy space. Using Plancherel Theorem, the following norms are
equivalent

o= ([ ) = o .



We denote the real numbers

4k . n—+ 2k
* _—14’* = 71:_—
b n’ b b n—2k

and we assume here and hereafter that

_ - [0 if p=pT
C_l_ég_{l it p#Ep

Finally, if 7 > 0 and X is an abstract functional space, we denote Cr(X) := C([0, 77, X),
Lh(X) == L*([0, T], X) and X,, the set of radial elements in X, moreover for an eventual
solution to (1.1), we denote 7" > 0 its lifespan.

2. Background and main results
In this section we give the main results and some technical tools needed in the sequel.

2.1 Main results
Results proved in this paper are listed in what follows.
First, we deal with local well-posedness of the heat problem (1.1) in the energy space.

Theorem 2.1. Take k> 1, ne(2k, 2kk(1_+1k)))1 <p <p" and uye H* Then, there exist
an admissible pair (q, r) in the meaning of Definition 2.8 and a unique maximal solution to
(1.1),

ueLq((O, T, H}”').

Moreover,
W) uec(o, T°), Bty
@ E(t) =E0)~ [ [uli(s, x)[’duds, for any t€ [0, T*);
@) ifp <p’, then
@) uis unique in C([0, T"), H);
(b) if T" < oo, then lim sup||u(t)||y: = oo and
~
C
u(t 21w
e
(© ife= =1 then T" = oo and there exists y > 0 such that
lw(t)||;e = O(e™), when - oo.

In the critical case, for small data, there exists a global solution to (1.1).
Theorem 2.2. Takek > 1, ne (2k, 2kk(1_+1k)) and p = p". Then, there exists ¢y > 0such that
if uweH * satisfies ||uo| g€ the problem (1.1) possesses a unique global solution

ueC (R+,Hﬁ ), satisfying the decay
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2n
-2k

tl}inwﬂu(t)HU:O, Sorall 2<p<n

Second, we are interested on the focusing case. Using the potential well method due to Payne—
Sattinger [15], we discuss global and non global existence of solutions to (1.1), when the data
belongs to some stable sets. Denote the quantities

fii=max{2a + (n — 2k)B, 2a +np}, ji:=min{2a+ (n — 2k)B, 20 + np}
and the set
A:={(@ f)ER, XR s.t >0 and a(p—1)+2ks>0}.

The following quantity will be called constraint

K. ,(v) = ;/[(2a+(ank)[})|Vkv|2+(2a+nﬂ)c|v|272(a+17fp> \u\”f’} x.

Take the minimizing problem under constraint

m, = inf {Ef(v), 5. t Kg‘/,(v):o}.
rd

For easy notation, set
Map = Wl(ll/}, ek = E1 and Ka,/} = Ki/}

Definition 2.3. We call a ground state to (1.1) any solution to
~(-8)'¢—cp+|8""9 =0, 0#£PeH)), muy=E(). 22)
The existence of ground state is claimed.

Theorem 2.4. Takek >0, n>2 1< p<p*and (a, p) € A So, there exists a ground stale
solution to (2.2). Moreover, m* := my, 5 1s nonzero and independent of (a, B).
Denote the spaces

A= {oeH’, st E(@)<m, and K;,(8)20};
AG = {deH', st E@)<m, and K, (¢)<0};

L - gl-
A; Aa;, ALy =Ags
Let us discuss global and non global existence of solutions to the heat problem (1.1).

Theorem 2.5. Take k> 1, ne (2k, 210 1 < p < p* and (a, p)e Ae=1and ueC
([0, T™), H*) be a maximal solution to (1. 1) Then,

(1) ifp <p* and uy eA;ﬂ, then T" = oo and u(t) eA;ﬁ for any time t > 0. Moreover,
Sor small ||uo||, there exists y > 0 such that '

(@)l = O(c™), when ¢ oo




@) ifug € A, then u blows-up in finite time. Remarks on the
The last result concerns instability by blow-up for stationary solutions to the heat high—order heat
problem (1.1). Indeed, near ground state, there exist infinitely many data giving non global equation
solutions. 4

Theorem 2.6. Takek > 1, ne (2k, Zkk(lflk)), e=1landp- < p < p". Let ¢ be a ground state
solution to (2.2). Then, for any e > 0, there exists uy € H* such that ||uo—@|| g < € and the 131
maximal solution to (1.1) is not global.

2.2 Tools

Let us collect some classical estimates needed forward this manuscript. We start with some
technical results about the high-order heat equation. Some useful properties of the free heat
kernel are gathered in what follows.

Proposition 2.7. Denoting the free operator associated to the high-order heat equation
Ti(t)¢ = e = F ()% 1= Ki(1)*9,

yields
(1) D'y + e fé e‘<t‘5>(‘4>k|u\p Y ds is the solution to the problem (1.1);
@2 TWTp=Tws T, = Tj. .

Let us recall the so-called Strichartz estimate [20].

Definition 2.8. A couple of real numbers (g, 7) is said to be admissible if

q,v>2 and Z—k:n<1—1)
q 2 7

Proposition 2.9. Let n>2, k>0, ug€L? and (q, r), (q, r) two admissible pairs. Then,
there exists C := Cy 5 such that

lloell o SC(HuOH + ||ie+ (_A)k””y}’ (L’))

Proof. Compute

where K € (L' nL*)(R") (see [7). Thus,
. 1
ITe@ol=<¢l, ||Tk(t)Tk(s)(meSmH(p”l'

The proof is finished via Theorem 1.2 in [12]. W
Using the above computation via Young inequality, the following smoothing effect yields.
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Lemma 2.10. There exists a positive constant C such that for all 1 <r < q < oo, we have

C :
17l < grgliell,  ¥E>0,Voeel/®). 23)

The following Sobolev injections [1,13] give a meaning to the energy and several
computations done in this note.
Lemma 2.11. Letn>2 k> 0andp € (1, oo). Then,
(1) WH(R")SLIR") whenever 1 < p < q < oo, and | <
2 WHR"MSLIRY) foranyq € [2, 2], n > 2k
(3) HY(R™SSLI(RY) forany q € (2, o), w2k

»m»—A
:m-

The following Gagliardo—Nirenberg inequality is useful throughout the manuscript [14].

Lemma 2.12. Letn>2 k> 0andp, q, r € (1, o). Then,

-1, S IV 15

for 3 = 0(,—%) + 122 such that 6 € [0, 1]
fn the critical case, recall some properties of the best constant of Sobolev injection [5,6].

Proposition 2.13. Take n>2and 0 < 2k < n. Then,
o 1 TR r
nk T . k|12 Q2%kgk ] %"
oxuet” ||V u T r LRy n\”
e || V¥u (3+ )r(ﬁ)

Moreover, uis such a minimizer if and only if there exist c € R, u > 0 and xy € R" such that
n—2k 2/z

(@) = (@ + v — %) 7
Let us give an abstract result.
Lemma 2.14. Let T > 0and X € C([0, T, Ry) such that
X<a+bX°on 0, T,

1

wherea b>0, 0>1, a< ( )(eb)— and X (0) < (0b)7". Then

Sg_qeom [0, 77.

Proof. The function f(x) := bx? —x + a is decreasing on [0, (bﬁ)ﬁ] and increasing on
[(66)™7, o0). The assumptions imply that £((66)7) < 0 and f(;25a) <0. As £(X(£)) >0,

f(0) > 0and X(0) < (be)ﬁ, we conclude the result by a continuity argument. ll
We close this subsection with a classical result about ordinary differential equations.

Proposition 2.15. Let e > 0. There is no real function G € C*(R ) satisfying
G(0)>0,G(0)>0 and GG —(1+¢&)(G)Y>0 on R,.



Proof. Assume the existence of such a function. Then (G~(1+9)G' )/ >0and
G S G (0)

Glte = G+ (0) > 0.

Integrating on (0, T°) the previous inequality, yields
1 1 G (0)
< — T
SG(M)SE0) TG0)

which implies that 7 < % % This is a contradiction, which achieves the proof. Il

3. Local well-posedness
This section is devoted to proving Theorem 2.1 about local well-posedness of the high-order
heat problem (1.1). The result <follows by a standard fixed point argument. Take the

admissible couple (¢, 7) := (<p e )_ L Hf’(;l ). Let us start with an intermediary result.

Lemma 3.1. Take up e H" There exist T > 0 and a unique u € L.(H k7 solution to (1).
Proof. For R, T > 0 consider the space

Xrg = {ueL"T (H’”) .t 2l sR}

endowed with the complete distance
d(u, v) := [lu — U”L"T(U)'

Take the function
t
b= P(v) = e gy + / e‘“‘”(‘”(‘v|f”1v)ds.
0

We prove that ¢ is a contraction of X7 g, for some positive 7", R.
Let u,v € X1 and w := u — v. Then, using the equality

——(1> )(1—€> L

n 7

p-1
r<|v| + el ky)

<), (ol + it ).

Since p <", there exists @ > 0 such that @ = oo if and only if p = p" and

1_, 142

a’ q

we get by Sobolev injection

leo(lol”™" + " )], <
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Thanks to Strichartz estimate

|| W“L‘I(I.LT) S Hw(|v|17*1 + ‘Mlpil) HLq’([,L",)

]

1 1 1
ST 0l ) + )

(34)
1
ST oz 015ty oy + ey )
Lyp—
STaR? 1||WHL4(LL")'
Applying the previous inequality for v = 0, yields
—t(-a) 1 pp-1
H””Lq(],y) < He MOHU(LU) + TR H””Lq(].Lr)
<Clluo|| + CTR.

Write now, for |a| = £,
HV%HU(LU)S ”1’20”#3 + Hvk(up)HLa’
< laoll x + (1)

ary

Denoting Pj(a) := {a; € (N"Y such that 3~ 1ozl- = a}, we get

s3> o

]1P

Lg' (I,LY)

Take the real numbers
1 17k 1.717k—|al-|

ay noa v n
Then
p—j &1 1
ay + ; a 7
With Holder inequality,

N
nl
-
s
_'b~
5T
3
3
=
R
=
=
g
2
E

=1 Py i=1

1 k ]
P
ST D et e LT Wl v



Taking account of Sobolev embedding
k

. J
ST el o LT el

J=1 Py

k
< ; = sk
pS Z el ¥y o N0t )

Then
1,y < Clltll s + CTHR. 85

Ifp < p’, % > 0, so choosing R := 2C||uo|| ;i and T > 0 small enough, it follows that ¢ is a
contraction of X7 . If p = p. using previous computation with the fact that when 7" vanishes,

[|e7t=2) =4) 4, H i~ 0, it follows that ¢ is a contraction of X7 g for small time. Thanks to

Picard flxed pomt theorem, existence of a solution of (1.1) is proved. For uniqueness of such a
solution, it is sufficient to apply (3.4) and use a translation argument.

Lemma 3.2. Take uy € H* and u € L%-(H*") be a solution of (1.1). Then, u € Cr(H*) n L%}
(H*") for any admissible couple (qy, ).

Proof. Take 0 < f1,1, < T, by Strichartz estimate via the integral formula

Jm.

SHupHLq’(

lla(tr) = u(ta) || =

L ((t 1), HY)
(1), HF)
1
<(f — b)||ulf s
(= ool 00

This completes the proof. ll
Let us prove unconditional uniqueness in the sub-critical case. Take ¢ := 1 + p and an
admissible couple (a, o). With Strichartz estimate

||Z’~0||L'I(I,L“) < ||w(|”|p_1 + |“‘p_1)

1)

<7 La(1,17) [HUHL‘” 1,10 T o] 7 (1L }

=3 A [

2
STV R 1||w||L”(1,L")'
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The sub-critical condition implies that 6 < 1 + p,, which gives a < 2. Then, unconditional
uniqueness is established via the last inequality.
Now, for € (0, T"), taking account of (3.5), if there exists R > 0 such that

Cllu®)||;e + C(T — 1) R* <R,
then, T < T". Thus, for any R > 0,
Cllut)|l,e + C(T* — )+ R <R,

Choosing R := 2C||u(?)|| y, it follows that
(1" = ) ()" 2 C.

Let us prove that the maximal solution of (1.1) is global in the sub-critical defocusing case.
The global existence is a consequence of the energy decay and previous calculations. Let
ueC([0, T"), H) be the unique maximal solution of (1.1). We prove that « is global. By
contradiction, suppose that 7" < 0. Consider for 0 < s < T, the problem

b+ (=A) v+ v+ oo = 0;
(PS){ v(s,.) = u(s,.).

Using the same arguments of local existence, we can find a real 7 > 0 and a solution v to (P;)
on C([s, s + 7], H*). Thanks to the energy decay, we see that 7 does not depend on s. Thus, if
we let s be close to 7" such that 7" < s + 7, this fact contradicts the maximality of 7°.

Let us prove that u € C(R,, H*), the global solution to (1.1) for ¢ = —e =1 and
1 < p < p" satisfies an exponential decay in the energy space.

Denoting the quantity K (u(t)) := ||u(t)| /7 Jrr |u(£) " dix, yields

E(u(t)) <K(u(t)) < (p+ 1)E(u(t)).
On the other hand, for 7" > 0,

/tK(%(S))dSZ (le(@®)I” = llu( D))

=N

<Sluto)?
<E(u(t)).
So,
T T
/ E(u(s))ds < / K (u(s))ds SE(u(?)).

Thus, for some positive real number 7 > 0,

y(t) = /t " Eu(s))ds
< E(u(t))

!

<—Twy(t)



This implies that, for ¢ > Ty,
() <3(To)e ™ < ToEw(To))e' .

Taking account of the monotonicity of the energy, for large 7" > 0,

/E ))ds > HTOE(u(s))dszToE(u(t—kTo)).

Then,
E(u(t+ Ty)) <E(u(Ty))e ™.
Finally,
it + To)| SE(u(t + Tv)) <E(u(Tv))e' .
The proof is finished.

4. Global well-posedness in the critical case

This section is devoted to prove Theorem 2.2 about global well-posedness of the critical high-

order heat type equation (1.1). Denote the norms

el zay == Neell 2 g, 125
_ V}z -
lellasry = [|V°]] . o
”””W = ||VM|| 2n(n+2k) 5
" (I, Ln+42")
lelly = 19l -

Let us start with an intermediary result.
Lemma 4.1. The following continuous injection holds.

letl iy = 112t )

Proof. Write

e
il = N1

s
<[P
H

< Hvuuz(l—p%)—l e

Db

I

s(uumv%*lu o 1Vull sy )
2(171—)71 pe— 2(17l

D=2 D
2p 29*

hec2=L)
pe=20-)
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Then

lull o <||||u||2” IIWII

be~ 2(1—74

l 12" (I

b2

o
" (0

|

2" (1, “’L))
Proposition 4.2. Take the critical case p := p* and I an interval containing zero. There
exists 5 > 0 such that for any uy € H* satisfying
(AR
[le™! ) uo|lyqy < 6,
there exists a unique solution u € C(I, H*) to (1.1). Moreover,

H””W([) <26, ||”||M(1) + ||”||Loo(1,Hk) SC(HMOHM + 5;1*). (4.6)

Proof. First, we establish the existence of a local solution to (1.1) by a fixed point argument.
For M := Cllug||gs, T > 0and I := (0, T'), take the set

Xu 5= {veM(), HU”W <26, ||v|] L2 g [ 2(2””) <2M}

endowed with the complete distance
d(% 1)) = ||u — UHLZ(Zlf:rn a 12(2k+»1)

Take the function
t
5= Pv) = e g + / g (t=5)(=0)" e
0

Let us prove that for some positive M, &, ¢ is a contraction of X s.

We establish that Xj; 4 is stable by ¢ for some small positive M, 6. Letv € Xy 5. Compute,
using Strichartz and Holder inequalities

‘|17‘|L2(2I’ij47)(1’[l9(_}*+n < HuoH + ||7)Z> H 22k+n) 2(2}*+n

w (I, L)
< ||u0|| + ||U||L2(2}§1+n T 22kin) |1)Z7 H ?k+n([’L%)
< ””0” + ”U”LZ(ZQWJ(L H2k) HUHLZp (112"

-2
Slluoll + llol] zeen 2o 10117

<M1+ &7



On the other hand

~ (A —2
1011y < lle e o ||y + [vlof? v

SM o+ |[Vor 2|,

2(1 [Zetn)
De—2
SM + |lollza 1ollway
<M+

Always using Strichartz estimate
HEHM([) < ||Vk“0“ + ||Vk(v|v‘pc_2)

2n_
L2(I Ln+2%)

< ||”0HH’Z+HV}€(U‘U‘[]FZ) Hyau%y

Using Faa-di bruno [4] identities, we get

where in Pr(v), we have Z ki =1, ZJ kil = vand |v| = k. Then, it is sufficient to estimate

the term
|v‘J - H )| o,
Taking the choice
. foslied)
it follows that

1 kb n+2k p k 1 k1
5t-= E = ot D o
2 n 2n ﬁ] ) 2p j:]ﬁj

Thus, with Holder inequality
k

k )
i /s kj =i RN
167~ [T @501, < ol o LT85, 000
=

j=1

With Sobolev injection, yields

p 2(1+2k) (2 242 1\ g
,HMz L)VV‘E (5 (n+2k) }’jﬁj JﬂJC_)WU]-\,k]/iJ.

This implies that
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i—1 =1

<ol e + Z H”H/é(;)lH”H?wa)
=

140 This finishes the stability of Xy, 5. Now, let «, v € Xj; s and w := » —v. Then
d(u, v) < ||w(@* + )

2(2k+n) 2(2k+n)
L 4+n ([.L dk+n )

,<_,||Z/U|| 22%k+n) ??k+n) ||1)p 2” n z/e+n + ”%‘DL
L~ (L7 L2 (L2

)k+n 2ktn ]
L% (1L %)

<ol + lulypd, v).
Then, using Lemma 4.1, we get
d(u, v) <& 2d(u, v).

This proves the contraction via taking small 6, M/ > 0.

Now, let us prove global existence.

By Strichartz estimate, if # exists on [0, #)] and satisfies ||uo| i small enough, we can use
(4.6) toextend #on [fy, fy + 1]. Hence, in order to prove global well-posedness, it is sufficient to
prove that [[u|| ,» remains small on the whole [0, T"). Let a positive time ¢ < T°. With the

decay of energy and Sobolev injection, yields

2E(u(t)) = ||V*uq H +p /\u P dx
<V + [P
Then,
Vi) ||* = 2E u(t)) + 1)3 / u(t) " dx
S| Vo] + | Voo | + || V()|

The proof is closed via Lemma 2.14.
Let us finish this section by proving the decay of solutions. Using the previous
proposition, it follows that

ueM(RONW(R,).

Using previous computation and denoting v(¢) := Ty (—t)u(t), we get for t, ' = + oo,

’

lot) = o)l < / (=) (Jul""u

k
Z”“”[) ‘M”Mz‘t' —0.
i1

Finally, taking account of Sobolev embeddings and denoting ¢ := tlir+n v(t) in Hk , yields



()l < [lu(t) = Te(OPMl, + I T: ()Y,
Su(t) = Tu®)ollx + 1 Te(D)D,
Slo() = ol + 1 1@l

Thanks to the smoothing effect (2.3), the decay is proved.

5. Existence of a ground state
The goal of this section is to prove that the elliptic problem

~(-AY'¢—chp+ 9P =0, ¢eH

has a ground state in the meaning that it has a nontrivial positive radial solution which
minimizes of the energy when K, 5 vanishes. Let us define the quantities

¢ = ePp(e);
LapE (@) = 0:(E(") g = Kap(9);

Hyy = (1 - Q)E

With a direct calculation

Ko p(v) = % / [(2{1 + (n— 2k)/f)|Vkv|2 + (2a+np)vf — ( a+tq —fp) |v\1“’] dx;

1 2 — 2k 2 1 2
Ha,ﬁ(v):é<l—w>‘wkv“ +§< ‘””ﬁ>|| §

np i1 1+p
+ Ka+p+1) 1_HJ/M dx.

Denote the quadratic part and the nonlinear parts of Kg 4,

K2, () ::/R {(ant (f—k) )‘Vkvlz + (0{+§ﬂ)|v|z}dx7 KN =K - K°.

Remark 5.1. Note that,
(1) 1n this section (a, B) € A;
(2) the proof of Theorem 2.2 is based on several Lemmas;
() in this section, we write, for easy notation, K = Ky, K Kaﬂ, KN =
Kaﬁ7£ £a/)’ andH:Ha,/;.
Lemma 5.2. We have
() m(LH($), H($)) >0, for all 0+ ¢ € HY;

@2 i-H ((]5’1) 1s increasing.
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Proof. Compute

L
LH() = £(1-Z)E©)

(e =i - (1 - 2)E)

(¢)

=—(L— (L —p)—=+ pH(9).

Now, since (£ — (2a + f(n —2k)) ||Vk¢|| = (L - (2a+ np))||¢||* = 0, we have (£ —ji) —
(L- ,u)||q5|\m—0Moreover£(}¢|l+p) (a (1 + ) +np)|¢|"*, so because (a, f) € A,

g [l
(L—p)(L—n) dex

(p_l)((ﬁp—i_p +2kﬁ /‘¢|de

LH(¢)>

S 1
“u

> 0.

The ﬁast point of the Lemma follows. The last point is a consequence of the equality
9H(¢") = LH(¢"). W
The next intermediate result is the following.

Lemma 5.3. Let (¢,,) be a bounded sequence of H* — {0} such that lim K%(¢,,) = 0. Then,
there exists ng € N such that K(¢,) > 0 for all n>ny "

Proof. Since (a, ) € A, and K9(¢,) vanishes at infinity, by Sobolev injection, we have
KY(9,) S 19,115 <19, 5" = 0 (1165 )-
Then K (¢) ~ K9(¢,) > 0. The proof is achieved. l

The last auxiliary result of this section reads as follows.

Lemma 5.4.
mep = inf {H(¢), s.t K(¢)<0}. 6.7)
O#peH",

Proof. Let m be the right hand side, then it is sufficient to prove that m <m;. Take ¢ € H*
such that K(¢) < 0 then by Lemma 5.3, the fact that hm KQ(¢") = 0 and A~H(¢") is
increasing, there exists 4 < 0 such that

K(¢") = 0,H(¢") <H(¢). (68)
The proof is closed.
Proof of Theorem 2.4

(1) sub-critical case. Let (¢,,) be a minimizing sequence, namely
0#¢,€H);,K($,) =0 and mH(¢,) = imE(¢,) =



. First step: (¢,) is bounded in H*. First case > 0. Then
19,1l SH(@,) = m.
So (¢,,) is bounded in H'. Assume that lim sup||@, || = oo. Then
9. <K(8,)
=-Kk"(¢,)
<19l

- nip-1)
<l I E | Vhg, |

14 pto-D
<l

This contradiction achieves this case. Second case f < 0. Using the fact that

a(p—1) + 2kB > 0and K, 5(¢,,) =0,

2HH($,) = 20, + 5 (oo — 1)+ 209) [ 191" Pas
>l — 1)+ 2tp) [ 191 as
> 16,7

Then, (¢,,) is bounded in H*.
« Second step: m > 0.

Taking account of the compact injection of the radial Sobolev space H’ fd on the Lebesgue

space L? for any 2 < p < p,, we take
¢,—¢ in H* and ¢,—~¢ in I, Vpe(2,p.).

Assume that ¢ = 0, since (¢,,) is bounded in H*, we have

KY(@,) Sl 0.

1+p

By Lemma 5.3, K(¢,,) > 0 for large » which is absurd. So
¢ #0.

With lower semi continuity of H* norm, we have K (¢) <0and H(¢) <m. Using (8), we can
assume that K(¢) =0 and E(¢) = H(¢)<m. So that ¢ is a minimizer satisfying

0+ ¢ eH:, K(¢) = 0and E(¢) = H(¢) = m. Thus
m =H(¢) > 0.

« (¢ isasolution to (2).
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AJMS Now, there 1s a Lagrange multiplier ne[R such that E'(¢) = 7K (¢). Recall that
26,1/2 L(¢) = (azld’aﬁ)u pand LE(¢) := (alE((paﬁ))M o Compute

!

0=K(¢) = LE($) = (E (¢),L(¢))
= (K (¢), L(9))
=nLK($) = nC’E($).

144 With a previous computation
_ . b1 14,
~(C = AL~ PE() = k5~ (p — 1)+ 24p) [ |4
—L’E(§) — FpE(¢)
> 0.

Thus 7 = 0and E'(¢) = 0. So, ¢ is a ground state and # is independent of a, 4.
(2) Critical case. Define the mass less action

K, 5(9) = LapE’ ()

32t (V=209 |99 - (a+5E 1o
( ) (RS

and the operator

1
20 = (B~ g )
k 2
= ylIviel

Let mgﬁ = Mgpfor p = p" and the real number

doy = inf { H ,(0) s.tKg‘ﬂ(¢)<0}.

Claim. mj) , = dy .
Since f( ap = 0 implies that E° = HY , it follows that mj ;>dj ;. Conversely, take
O;éd)EHksuchthatKgﬂ( ) < 0. Thus, flen0<i—>0 we get

K1) = 5 (20 + (N — 2)p)22 [ V6 - ( %) Pl

l\DI»—A [\3|

(2a+ (N — 20)8)2||V*9|” > 0.



So, there exists A € (0, 1) satisfying K7 ,(A¢) = 0and Remarks on the

m , <HS ,(A9) = 22H) ,(9) <H (). high-order heat
o . equation
Thus, m, 5 < d

So mj 4 = do Because of the definitions of K[ ; and Hy ,, it is clear that ] ; is

independent of (a f) and 145
. k 2 2 .
mimy = it LUV s 9ol < ol |
Taking the scaling A,
- ﬁz kg [ 2pe || ok 4 || 2 pf}
m—o#}g{z{]\]ﬁ [V99]f° 5. t 2| 9*|* < g

_2

. k 2 lIgll ™"
=t vl (S
et VoIl

LAy (”V%H)%
Nozgert, | \ |91,

Here, C* denotes the best constant of the Sobolev injection
ll,, <
is known [16] to be attained by the following explicit Q € H k,

a
R

which solves the mass less equation

6. Invariant sets and applications
This section is devoted to establish Theorem 2.5. The proof is based on two auxiliary results.

Lemma 6.1. The sets A ap and A ﬂ are independent of the couple (a, ).

Proof. Take (a, ) and (o, § ) in A By Theorem 2.4, the union A% ;UAC o 1s Independent of
(a, ). So, it is sufficient to prove that A% ap 18 1ndependent of (a,p). If E°(v) < m and
Kg 5(v) =0, then v = 0. So, Ach is open. The rescaling v* := e*v(¢™#*.) implies that a

ne1ghborhood of zero is in A ap- Moreover, this rescaling w1th A—0 gives that Aa Y is
contracted to zero and so it is connected. Now, write
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e+ e+ o+ - . o+ o+ o+ -
Ay = Azpn (A5 0AT ) = (A, 047 (A5, VAT ).

Since by the definition, A, is open and 0 € A;; n AZ* using a connectivity argument, we

have A, = A(;' . The proof is ended. M /

Lemma 6.2. The sets Ag; and A;; arve invariant under the flow of (1.1).

Proof. Take (a, ) € A Let ug € A7, ; and u € C+ (H*) be the maximal solution of (1.1). The
proof follows with contradiction. Assume that for some time £, € (0, T7), u(ty) gEA;’_; and
u(t) eAfl’; for all £ € (0, ty). Since the energy is decreasing and E(u(f)) < m, then, with a
continuity argument, there exists a positive time # € (0, fy) such that K, 4(u«(f,)) = 0. This
con+tradicts the definition of . and finishes the proof in this case. The proof is similar to
C,
A, 1
(1) Proof of the first part of Theorem 2.5. Using the two previous Lemmas via a
translation argument, we can assume that «(¢) € A, for any ¢ €[0, 7). Taking
account of the definition of m, we get

m > E(u(t)
> Blu(t) 5K ult)

a 2 p—1 1+
= o7l VO + T mE O

This implies, via decay of the equality
3 (|lu(t)]|”) = 2K10(u(t)) <O,

that
sup ae(1) 1 < oo.
[0,77]

Then, « is global.
Now, we prove an exponential decay. For small ||ug |, since sup, ||u(?) || = <1, we get using
Gagliardo—Nirenberg inequality in Lemma 2.12,

Kiofu(®) = )~ [ o) as

n(p-1)

ra

n(p:

=)
Ju(?)]

> [l (@) + lle(®) [ — Cllae() [

_np=1) M
2 [l (®)|” + llae(®) [ (1 — Cllasol|”=> ae(t)] T
> Cllul)

> CE(u(t)).



On the other hand
1 1
B(u(®) = g0 5 [ I ds

1
1+p

1 1 2
— <§_m>|\u(t)|\m +1+pK10( (1)

> Crmax{ K o(0(8)), ()] .

= o) — s (o) e — Korofet))

Moreover, for 7' > 0,

| Kuotutsds = (ol - (T

<gllu(t)
<CE(u(t)).
So,

/tTE ds</ Kyo(u(s))ds <E(u(?)).

Thus, for some positive real number 7y > 0,
/ E(u(s
(u(1))
Toy (t)
This implies that, for ¢ > Ty,
¥(£) <V(To)e' ™ < ToE(u(Ty))e .
Taking account of the monotonicity of the energy, for large T > 0,

/E Vds > HTQE(u(s))dszTOE(u(t-i—TO)).

Then,
E(u(t + Tv)) Eu(Ty))e .

Finally,
1t

lee(t + To) Iz SEult + To)) <E(u(Tv))e .

The proof is finished.
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AJMS (2) Proof of the second part of Theorem 2.4. Using the two previous Lemmas via a
26.1/2 translation argument, we can assume that #(¢) eAi} for any £ €[0, T") and any
’ A > 0. Take the real function

L) ::%/O lu(s)|2ds, telo, T).

148

Using Eq. (1.1), a direct computation gives

"

L) = [ suds = ~1ut@ls — el + [
R" -

We discuss two cases.

(@) First case: E“(up) > 0. For any 4 > 0,

. 1 o2 p—1 p+1
H (u) = TN {k/IHV u| +p—+ 1/RN|M\ dx] > m.

Thus, for any € > 0,

L= el V'l = 1+ )|Vl et + [ a7

el /2 1p-1 p+1
> Kz+n)m71p—+1/w|u| dx}

—2(1+8)[ C(u0)+2(li—p) /|u\[’“dx]

t
+2(1+s)/ ||u(s)||2ds+/ u?
0 R”

> [% (%+n>m el +e)Ef(uO)} + (1 _ i L"; 7%)

t
></ |u\f’“dx+2(1+e)/ li(s)|%ds
R" 0

(1)

=)+ —=
()+p+1 g

t
|u|f’“dx+2(1+e)/ li(s)|2ds.
0

Taking 1 := aeand y := m — E*(u,), we get

) :2y(1+e)+m[%—2+s<—2+%)}

Nm 1
—8(27—2m+7> +2Wl(%—1) + 2.



On the other hand,

pilo _b-1
() =p+1-(1+e) -

po(1-E) 1

The choice } 5=} < a < , via & > 0 near to zero implies that the terms (/) and (I7) are non
negative. Thus,

t
L >2(1+e)/ (et (s)||*ds.
0

Thanks to Cauchy-Schwarz inequality, it follows that
LL' > (1+ &) il 2y

72 (22)
> (1+ ) i 0
> (14 ¢)L?

Indeed, if L(#) = 0 for some positive time, we get #y = E(ug) = 0, which is a contradiction.
Thus

(L) = —eL*2[L'L— (1 +¢&)(L")])0.
Taking account of Proposition 2.15, for some finite time 7" > 0,

T
lim sup/ [|e(s)||*ds = oo.
t—-T 0

Thus, 7° < oo and « is not global. This ends the proof.
(b) Second case: E*(uy) < 0. Compute

L' ==y —clul®+ [ Juf*'as
Rﬂ

uf’! 1 c
> @+ o) [ Msde Glulgtal’)

> — (24 e)E(u).

So, thanks to the identity £ («) = —|Ju||*, we get

L'z @+ &) (il ) — E(w) ). 610

Now, the proof goes by contradiction assuming that 7" = .

Claim 1. There exists #; > 0 such that [ [|é(s)]|*ds > 0.
Indeed, otherwise u(f) = ug almost everywhere and solves the elliptic stationary equation
(=A)*u + cu = |ul’ " u. Therefore, ||u\|12q}e +Cllul® = [|uf’dxand

Rﬂ
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2 2
ol cllal? = 52 [ s = (1= 225 [ s = 20 <

Then, #y = 0 which contradicts the fact that Ko (#o) < 0.
Claim 2. For any 0 < a < 1, there exists ¢, > 0 such that
(L' =L(0)?*>alL? on (t,).
The claim immediately follows from the first one and (6.10) observing that
lim Z(#) = lim L(t) = +co.

Claim 3. One can choose a = a(¢) such that
LL' >(1+a)l? on (t, ).

Indeed, we have

" 2+E 2 12
LE > 2l o Wil

2+e

H”””]l([l)

2+e

(L' —L(0)

Z(Z—;e)aL,27

where we used (6.10) in the first estimate, Cauchy-Schwarz inequality in the second and
Claim 2 in the last one. Now choosing a such that 1 < (2“)" =1+ ¢ we get

LL' > (1+¢)L? for 1arge time.

Thanks to Proposition 2.15, this ordinary differential inequality blows up in finite time and
contradicts our assumption that the solution is global. This ends the proof.

7. Strong instability

This section is devoted to prove Theorem 2.5 about strong instability of stationary solutions
to (1.1). Take here and hereafter ¢ = € = 1. Denote the scaling #, := /I’u( .). Let us write an
auxiliary result.

Lemma 7.1. Let u€ H* such that Kl,_%(u) <0. Then, there exists Ay <1 such that
(1) KL_%(M,L)) =0
2) A = 1if and only z'le_’_%(u) =0
3) LEw) > 0for A€ (0, 40) and £ E(u;) < 0 for A€ (A, o),
4) A— E(u;)1is concave on (1, ),
©) HEw) = 5K 2(uy).



Proof. With direct computations, we have Remarks on the

2k/1 high-order heat
N
0,E(u;) = ﬂKl,—%(u/l)v
which proves (5). Now 151
2k 2 N/1 1 N (p_1)— 1
Ky stu) = 2 vl =¥ (E e H))m v [ has.

A monotonicity argument via the inequality p < p* closes the proof of (1), (2) and (3). For (4),
it is sufficient to compute using (3). Il

Lemma 7.2. Let ¢ be a ground state solution of (2.2), A > 1 a real number close to one and
uy € C([0, T*), H*) be the solution to (1.1) with data ¢,. Then, for any t€ (0, T"),

E(u,(t)) <E(¢) and K, _(u;(t)) <0.

Proof. By Lemma 7.1, we have

E(¢,) < E($) and K, 5(;) <0

Moreover, thanks to the decay of energy, it follows that for any ¢ > 0,
E(u, (1)) <E(¢,(1)) < E(9).

Then K, z(m (t)) #0because ¢ is a ground state. Finally K; z(u 1(1)) < 0 with a continuity
argument.’ ll

Now, we are ready to prove the instability result.

Take u; € Cy+ (H*) the maximal solution to (1.1) with data ¢,, where 2 > 11is close to one
and ¢ is a ground state solution to (2.2). With the previous Lemma, we get

uy(t) €A; _,, for any te(0,77).

1-2
Then, using Theorem 2.5, it follows that
i sup|ju (¢)]}; = oo.
The proof is finished via the fact thetlgT
lim g, — ¢l = 0.

References
[1] D.R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[2] F. Bernis, A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential
Equations 83 (1990) 179-206.

[3] H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data, J. d’Anal. Math. 68
(1996) 73-90.

[4] G.M. Constantine, T.H. Savitis, A multivariate Faa Di Bruno formula with applications, Trans.
Amer. Math. Soc. 348 (2) (1996) 503-520.



AJMS
26,1/2

152

[5] A. Cotsiolis, N.K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional
derivatives, J. Math. Anal. Appl. 295 (2004) 225-236.

[6] J. Davila, M.D. Pino, Y. Sire, Non degeneracy of the bubble in the critical case for non local
equations, Proc. Amer. Math. Soc. 141 (2013) 3865-3870.

[7] S.D. Eidel'man, Parabolic systems, in: Translated from the Russian by Scripta Tech- nica, North-
Holland Publishing, London, Amsterdam, 1969.

[8] V.A. Galaktionov, Critical global asymptotics in high-order semilinear parabolic equations, Int. J.
Math. Math. Sci. 60 (2003) 3809-3825.

[9] V.A. Galaktionov, S.I. Pohozaev, Existence and blow-up for higher-order semi- linear parabolic
equations: Majorizing order-preserving operators, Indiana Univ. Math. J. 51 (6) (2002) 1321-1338.

[10] A. Haraux, F.B. Weissler, Non uniqueness for a semilinear initial value problem, Indiana Univ.
Math. J. 31 (1982) 167-189.

[11] S. Tbrahim, M. Majdoub, R. Jrad, T. Saanouni, Local well posedness of a 2D semilinear heat
equation, Bull. Belg. Math. Soc. Simon Stevin 21 (3) (2014) 535-551.

[12] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998) 955-980.
[13] P.L. Lions, Symetrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315-334.

[14] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super Pisa Cl. Sci. 13 (1955)
116-162.

[15] L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel
J. Math. 22 (3-4) (1975) 273-303.

[16] L.A. Peletier, W.C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics, in:
Progress in Nonlinear Differential Equations and their Appli- cations, vol. 45, Birkhuser Boston,
Massachusetts, 2001.

[17] T. Saanouni, Global well-posedness and finite time blow-up of some heat type equations, Proc.
Edinb. Math. Soc. 60 (2017) 481-497.

[18] F.B. Weissler, Local existence and nonexistence for a semilinear parabolic equation in L, Indiana
Univ. Math. J. 29 (1980) 79-102.

[19] F.B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,
Israel J. Math. 38 (1981) 29-40.

[20] Z. Zhai, Strichartz type estimates for fractional heat equations, J. Math. Anal. Appl. 356 (2009)
642-658.

Corresponding author
Tarek Saanouni can be contacted at: Tarek.saanouni@ipeiem.rnu.tn

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com


mailto:Tarek.saanouni@ipeiem.rnu.tn

	Remarks on the critical nonlinear high-order heat equation
	Background and main results
	Main results

	Strong instability
	References


