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Abstract

In this paper, we consider a two color multi-drawing urn model. At each discrete time step, we draw uniformly
at random a sample of 2 balls (7 > 1) and note their color, they will be returned to the urn together with a
random number of balls depending on the sample’s composition. The replacement rule is a 2 X 2 matrix
depending on bounded discrete positive random variables. Using a stochastic approximation algorithm and
martingales methods, we investigate the asymptotic behavior of the urn after many draws.
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1. Introduction

The classical Pélya urn was introduced by Pélya and Eggenberger [7] describing contagious
diseases. The first model is as follows: An urn contains balls of two colors at the start, white
and blue. At each step, one picks a ball randomly and returns it to the urn with a ball of the
same color. Afterwards, there were many generalizations and urn model become a simple tool
to describe several models such finance, clinical trials (see[19,22]), biology (see [11]), computer
sciences, internet (see [8,18]), etc...

Recently, Mahmoud, Chen, Wei, Kuba and Sulzbach [4,5,12-15], have focused on the multi-
drawing urn. Instead of picking a ball,one picks a sample of . balls (1 > ¢), say ¢ white and
(m — £) blue balls. The pick is returned back to the urn together with a,,_, white and b,,_, blue
balls, where @, and by, 0 < ¢ <m are integers. At first, they treated two particular cases when
{am—¢ = c X and b,y = ¢ X (m—{)} and when {a,,—y = ¢ X (m —¥) and b,,_, = ¢ X ¢},
where cis a positive constant. By different methods as martingales and moment methods, the

© Aguech Rafik and Selmi Olfa. Published in the Arab Journal of Mathematical Sciences. Published by
Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY
4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for
both commercial and non-commercial purposes), subject to full attribution to the original publication
and authors. The full terms of this license may be seen at http:/creativecommons.org/licences/by/4.0/
legalcode

The first author is grateful to the King Saud University, Deanship of Scientific Research, College of
Science Research Center. The authors also thank two anonymous referees for their valuable comments
and suggestions. l

The publisher wishes to inform readers that the article “Unbalanced multi-drawing urn with random
addition matrix” was originally published by the previous publisher of the Arab Journal of Mathematical
Sciences and the pagination of this article has been subsequently changed. There has been no change to

L g ) g : A al of Mathematical
the content of the article. This change was necessary for the journal to transition from the previous rab Journal of Mathematica

Sciences

publisher to the new one. The publisher sincerely apologises for any inconvenience caused. To access Vol. 26 No. 12,2020
and cite this article, please use Rafik, A., Olfa, S. (2019), “Unbalanced multi-drawing urn with random Emerald pubushingp Limited
addition matrix” Arab Journal of Mathematical Sciences, Vol. 26 No. 1/2, pp. 57-74. The original elI35N: 2588 9214

S . -ISSN: 1319-5166
publication date for this paper was 11/01/2019. DOL 101016/ ajmec 201812004


http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1016/j.ajmsc.2018.12.004

AJMS
26,1/2

58

authors described the asymptotic behavior of the urn composition. When considering the
general case and in order to ensure the existence of a martingale, they supposed that W, the
number of white balls in the urn after # draws, satisfies the affinity condition i.e, there exist
two deterministic sequences (@, ) and (f,) such that, for all n > 0, E[W,,11|F ] = @, W, + B,
Under this condition, the authors focused on small and large index urns. Later, the affinity
condition was removed in the work of Lasmer, Mailler and Selmi [16], they generalized this
model and looked at the case of more than two colors.

This paper contains the first results about multi drawing Pélya urns with random
replacement rule. Even in the classical Pélya urn, where one ball is picked at every time
step very few results cover the unbalanced case: exceptions are the works of Janson and
Aguech. In [9] Janson studied a generalized urn model containing ¢ different colors
(g>1) with a g X g replacement matrix A with random entries such that A4; ; >0 and
[E(Af ;) <coforallz,j=1, ..., ¢ Janson considered the case when the mean of A is an
irreducible matrix. Using the method of embedding in continuous time of Athrea and
Karlin [3], he gave explicit formulas for the asymptotic variances and covariances as
well as functional limit theorems for the urn. Then, Janson [10] considered a particular
two color Pdlya urn model evolving according to a triangular replacement matrix (the
matrix in non irreducible) with deterministic entries. He established theorems describing
the asymptotic behavior of the composition of the urn after # draws. Afterwards,
Aguech [1] extended some results and studied two colors urn model with triangular
replacement matrix. The entries of such a matrix, X, Y, and C,, are positive random
variables with finite means and variances. The embedding in continuous times’ method
were successful once again and he gave theorems about the asymptotic behavior of the
urn’s composition after a long time.

In this paper, we deal with a two color unbalanced urn class with multiple drawing and
random addition matrix. Consider X and Y two discrete-valued random variables. We
assume that there exists two constants U > 0and L > Osuchthat L<X <UandL<Y <L
Let (X,,),50 (resp (Yy20),.¢) be a sequence of independent random variables distributed like X
(resp Y). The sequences X, and Y, are not assumed to be independent.

The model we study is defined as follows: An urn contains initially W, white balls and B,
blue balls, we fix an integer m > 1, at a discrete step # > 1, we draw uniformly at random a
sample of m balls, we denote by &, the number of white balls among those m balls (we assume
that the initial composition of the urn is more than  to make the first draw possible). We
return the drawn sample together with @,,(&,, m — fn)t balls, where @, is a 2 X 2 matrix
depending on the random variables X, and Y. Let us denote by W, (resp B,,) the number of
white balls (resp blue balls), T}, the total number of balls and by Z, the proportion of white
balls in the urn at time #. In other words, the process is defined recursively as follows: for all

n>1
Wn I/Vn—l én
(Bn ) D (B”_l ) +Q, <m z g,n). M
Let F,, be the o-field generated by the first # draws. Note that, with these notations, we have
for ke {0, ... ,m},

(anl)(anl)

Pley = HF i) = — 75 @

Thus, conditioning on F,_; the variable £, has an hypergeometric distribution with
parameters m, Z,_1 and T,,_;. Some particular cases were the interest of recent works [4,15]



and [2], where the authors characterized the urn models defined by Eq. (1) for the following

R R RN

where a, bare strictly positive integers. To generalize the previous works, we consider the urn
models evolving according to Eq. (1) with

ool (2D DG D)
! 0 Y, /)'\Y, 0,)°\0 X /)'\X, 0/[
The main idea is to use the stochastic algorithms and martingales in order to prove that the
number of white balls in the urn converges almost surely and to study its fluctuations around
its limit whenever it is possible.

The paper is organized as follows. In Section 2, we give the main results of the paper.

Section 3 is devoted to the details of the stochastic approximation algorithm’s method. The
proofs of the main results are detailed in Section 4.

2. Main results
We start with some notations. The notation a.s. stands for ahmost surely. For a random

variable R, we denote by
ir = E(R) and o4 = Var(R),
by py = py, (respectively uy := py,) and 6% := 0% (respectively o3, := o%,). For x, and y,
two sequences of real numbers such that y, # 0 for all #, we denote x,, = o(y,) (respectively
X = 0(¥y), @.8) if iy, %, /¥, = 0 (f 1im,, 0%, /¥, = 0, a.s when x,, and y, are random).
In this section we state our main result. As mentioned in the introduction, we study urn
models evolving according to Eq. (1). Recall that in the whole of paper we consider (X,,),5;
(resp (Y7,),51), a sequence of independent random variables distributed like X (resp V).
The present theorem deals with an urn evolving with an anti-diagonal replacement
matrix. The model is then opposite reinforced, i.e the more color is drawn the more it
reinforces the opposite color.

L \/E . . .
Theorem 01. L)e(t 2= e and consider the urn model evolving by the matrix
Q, = ( v O” ) We have the following results:
n
(1)  The total number of balls in the wrn after n draws satisfies
T, = Vlxpymn+o(n), as. 6))

and the number of white and blue balls in the urn after n draws satisfy
Wy =pux(l —z)mn+o(n), a.s.

B, =pyzmn+on), as.

(2)  Furthermore, with G(x) = Z?:o a;x’, the normalized number of white balls in the wrn
satisfies the central limit theorem
%—D)N(O, @), as n— +oo. @)
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(3)  Furthermore, when Y, = X, for all n >0, the total number of balls in the urn after n
draws satisfies, for any & > %

T, = muyn +o(v/n In’ n), as.
The number of white balls W, and blue balls B, in the urn after n draws satisfy for any
5> 14,

W, = n+0(f In’ n), a.s,

2
B, = %n +o(vn In’n), as.

We have the convergence in distribution:

_1 _
W "—/\/'(0 1) and lim W, — EW)

I = 1);
n—%rfoo 2\/_ n>+c0 Zl\/% N(O, ))

where

Z:%(af( + pye) and X :%[(Ui + pye) +mPoy].

Example 1. Let X, = aand Y,, = b (where ¢ and b are not random), then z = Va__ This
case was studied in [2] and the authors proved the following
\/%(?,/" —z) 2 N Lz) as n— oo.
" 3m(va +/b)

Under the notation of Theorem 1, we easily compute G(z) = mabz(1—z) and then the
particular case is proved again.

Example 2. Let X,, = Y,, = C (non random), the urn is balanced and the total number of
balls is deterministic and satisfies 7}, = Ty + Cmn. Furthermore, we have py = C and
ag( = 0, applying Theorem 1(3) we obtain the following limit:
I/I/n - % D chz
o N

Kuba et al. [15] studied this particular case and established such a result via two different
methods: The recursion formulas permit to derive the expression of the higher moments of
the number of white balls and then to conclude functional limit theorem. The same result was
proved via martingales method.

In the following theorem, we consider a diagonal replacement matrix &),,. The model is self
reinforced since the rich gets richer. As the particular case when m = 1, we compare ZX
with 1, we will distinguish different phases.

Theorem 2. Consider the urn evolving by the matrix Q, = (X" 0 ) .

as 77— 0.

0 Y,

(1) If ux > py, then the total number of balls in the urn after n draws satisfies
T, =muwn+o(n), as.,

and the asymptotic composition of the urn is



W, =muxn+on), B,=B.n +o(#n), as.

where p = 77; and B, 1s a positive random variable.
(2) If ux = py, the composition of the urn after n draws satisfies

T, = muyn+o(n), a.s.

In addition, there exists a positive vandom variable Wy, such that,
W,=Wen+on) and B, = (um — W) n+o(n), as.

(3)  Furthermore, if for alln>0, Y, = X, the distribution of the vandom variable W, is
absolutely continuous.

Remark. The case when yy < py is obtained by interchanging the colors. In fact we have
the following almost sure results:

T, = muyn+on), W, = Wen® + o(n) and B, = muyn + o(n),

where W, is a positive random variable and ¢ = ”% .

Example 3. Aguech [1] studied the particular case when m = 1 and considered the
following triangular replacement matrix

(¢ %)
(:71 Yﬂ ’
where X,, Y, and C, are independent positive random variables with finite means and

variances. Via embedding in continuous time method and martingales, the author proved, for
C, = 0, the following almost sure results:

@I py > py,
W, = uyn+o(n), B, =Dn’ and T, = uyn + o(n),

where p = £ and D s a positive random variable.
O If py = py,

W, n+o(n) and B, n+o(n),

B w B B

BN “WiB
where W and B are the almost sure limit of a continuous time martingale.

We prove again these results in Theorem 2 using stochastic approximation algorithm.

Example 4. Chen and Kuba [4] studied the case when X, = Y,, = C(Cis non random) and
m >1. They gave explicit expressions of moment of all order of W,,/x and proved that its
almost sure limit, W, cannot be an ordinary Befa distribution, unlike the original Polya urn
model [7] when X = Cand m = 1, Eggenberger and Pélya proved in 1923 that the random
variable W, /C has a Beta distribution with parameters (By/C, W;/C). Unfortunately, in
our model we cannot yet derive the expression of higher moments of W, /n since the
recurrence formulas are too intricate.

3. Some results on stochastic approximation algorithm

The stochastic algorithm approximation plays a crucial role in the proofs in order to describe
the asymptotic composition of the urn. As many versions of the stochastic algorithm exist in
the literature (see [6] for example), we adapt the version of Renlund in [20,21].
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Definition 1. A stochastic approximation algorithm (U,),sis a stochastic process taking
values in [0, 1] and adapted to a filtration F, that satisfies

Un+1 -U, = Vn+1 (f(Un) + AMZ+1)7 ©)

where (y,),51 and (AM,),, are two F,-measurable sequences of random variables, f is a
function from [0, 1] into R such that £(0) >0, f(1) <0 and the following conditions hold
almost surely: There exists constants ¢1, ¢z, Ka, and Ky positive real numbers such that for
any n>1,

@) * <y, <%
(i) E(AM,.1)*| ) < Ka;
(iii) [f(U,)| < K

(iv) E[y, 1AM, 1| F ] = 0.

Definition 2. Let Z; = {x €0, 1]; f(x) = 0}. A zero p € Z; will be called stable if there
exists a neighborhood N, of p such that f(x)(x—p) < 0 whenever x e N )\{p}. If f is
differentiable, then f'(p) is sufficient to determine that p is stable.

Remark. Note that Assumption (z) in Definition 1 is not stated as in [20] where it is
assumed that there exists a positive constant K, such that |[AM,| < Kx.

We have the following result about the process defined by Eq. (5)

Proposition 1. Let (U,),s, be a stochastic algorithm defined by Eq. (). If f is continuous,
then lim,,_, | U, exists almost surely and is a stable zero of f.

The following lemmas will be useful for the proof of Proposition 1.

Lemma 1. Define V,, = >, v;AM;. Under the assumptions of Proposition 1, V,, converges
almost surely.

Proof. Under the assumptions mentioned in Definition 1, we have
[E(Vn+1|fn) = Vn + E(yn+1AMz+l|:Fn) = Vn

We deduce that (V,,, F,), is a martingale. On the other hand,

n
n n

E(V2) = YO EGAAM)) < Y ZE(M)) <Kad Yk < o

=1 =1 =1
It follows that (V},),,is an L2 bounded martingale, and thus, it converges almost surely. [J

Next lemma ensures that, under the assumptions of Proposition 1, all possible candidates
for the almost sure limit of U, are necessary among the zeros of f.

Lemma 2 (/20]). Let Z; = {x; f(x) =0} be the set of zeros of f and let C(U,) be the set
of limit points of {U,} defined by
cU,) =({Un U1, -1,

n>1

where A denotes the closure of a set A. Under the assumptions of Proposition 1, if f is
continuous, then,

-

PC(Uy) € Zp) = L.



Lemma 3 (/20]). Suppose that f(x) < —& (or f(x) > & for some &> 0, whenever
x € (ay, bo). Then,

C(Un)ﬂ(do, bo) :¢ a.s.,

and either lim sup,, U, <ay or lim inf,, U, > by.
We are now able to handle the proof of Proposition 1.

Proof of Proposition 1. The proof is close to Theorem 1 in [20], for the convenience of
the reader, we resume the proof and we mention the main steps. If lim,,_, , ., U, does not exist,
we can find two rational numbers in the open interval

Jliminf ,,— 4 o Uy, imsup ;1o Uy [ Let lim infU, < p < ¢ < lim supU,, be two arbitrary
different rational numbers. If we can show that

P({lim infU, < p}n{lim supU, > q}) =0,

then, the existence of the limit will be established and the claim of the proposition follows
from Lemma 2. For this reason, we need to distinguish two different cases whether or not p
and g are in the same connected component of Z;.

Case 1: p and g are not in the same connected component of Z¢: Since Z; is closed
and f is continuous there must exist [a, ] C [p, ]2} such that f is non-zero and has
a constant sign for all x € (¢, b). By Lemma 3, it is impossible to have lim inf, U, < a
and lim sup,, U, > b.

Case 2: p and g are in the same connected component of Z: In all the cases of our
framework Zis a set of two isolated points, therefore we are not interested to the case when p
and ¢ are not in the same connected component.

To establish that the almost sure limit of U, is among the stable point set, we refer the
reader to [20] to see a detailed proof. [

Next result is due to Renlund [21] which will be used in the proofs of Theorems 1 and 2.

Theorem 3 (/21)). Let (Uy),s,satisfy Eq. (5) and that lim,, . U, = U". Let

?n =Yy, }\(Uvﬂ—l)7 where ?(.X') = (;;(ji) P

If 7, converges almost surely to some imit 7 > % andif E [(ny,,AMn)2 | Fu1] = 6% > 0, then,
we have the convergence in distribution
o D o2
va(U, =U") — N0, %-1)

4. Proof of the main results
4.1 Prerequisite for the proofs of the main resulls
We show in the following that the stochastic approximation algorithm is a fruitful method
to study unbalanced urn models. Although there are few versions of such a method that
permit to y,, to be random, the version of Renlund [20] and [21] applies to our model.

Under the assumptions of Theorem 1 and according to Eq. (1), the compositions of the urn
satisfy the following recursions:

VVn+1 = Wn + )(?1+1 (m - §n+1) (6)

and
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T =T, + WanH + §;1+1(Yn+1 - Xn+1)- (@)
We start with first results that will be useful for the proof of Theorem 2.

Lemma 4 (Technical Lemma). For all integers m, A, B such that m < A + Bwe have

St )

(1), ) a4 ) (1)

m=0

and

Remark. Since conditioning on F,_ the variable (£,) has an hypergeometric distribution
with parameters m, Z,_1 and T,,_y, it follows from Lemma 4 the following:

[E(énw?n—l) == mzn»

and
Tn—l —m

\/07’(511|.7:n—1) = WlZn_l (]_ — Zn—l) ﬁ .

Lemma 5. Under the assumptions of Theorem 1, the proportion of white balls after n draws,
Zy, Satisfies the stochastic algovithm defined by (5), where y,, = Tin,

f(x) = mluy — py)2* — 2puxmx + pym,

and
AMHl = Dn+1 - [E[Dn+1|fn]7

with
Dn+1 = §n+1 (Zn(XnH - YYn-H) - XM-H) + MXM+1 (1 - Zn)

Proof. In view of the recursions in Equations (6), (7) we have

1
Zuor = Zym o [ W4 Xoa 0 = 0) = 20Ty X 4 Gy (Vo = X))
n+
1
— o [ 0n = 610) = 20X + £y (Vs = Xo))
n+
Dn+1

Tn+l

An easy computation shows that E(Dy1|F ) = m(puy — py) 2% = 2mpx 2y + mpy. O

Using Proposition 1, we show that the almost sure imit of the proportion of white balls in the
urn depends on the means of the vaviables X,, and Y,:

Proposition 2. The proportion of white balls in the urn after n draws, under the assumptions
of Theorem 1, satisfies



limZ, =2z =—"-— \/”—X a.s. ®
n>-too Vix + iy

Proof. In view of Lemma 5, we check the assumptions of Definition 1, indeed,

(i) an easy computation shows that

T,=To+my (m—&)Xi+» &Y ©
i=1 i=1

Since forallz>1wehave0 < £, <m L < X, < UandL <Y, < U, then
mnl < T, < To+mnU.

Then the following bound holds, for allz > 1

3|2

2|&
—
-
2

1
< =<
<7 =

1

with ¢; = 7 andcy = 7.

(11) To+mU +m
E[(AM1)*|F] < (uixyy + 3ay) (m + m®) + 5m°uye + 20 ppy

+m*(|luy — py| + 3uy) = Ka,

(i) |[f(Z) <m(|py — px| + 3ux) = Ky,
@) E|7h AMa|F,| <F-EAM, |7, = 0.

Since the function £, defined in Lemma 5, is continuous, we conclude by Proposition 1, that the
process Z, converges a.s. to

Vi
Ve

which is the unique zero of f with negative derivative. []
The following Lemma will intervene in the proof of Theorem.

Lemma 6. Under the assumptions of Theovem 1, the total number of balls after n draws
satisfies

. T,
lim — = m\/ligiy, a.s.

n—-+oco N

Proof. Let G, = Y7, [fl-(Yi -X) — E[&(Y: - X)|F i,l}] , by the recursive Eq. (7), we have

Tn_ + ZXJF — Ux) ZZHJF*
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Since (X;);», are i.id. random variables, then by the strong law of large numbers we have
m n
7S
=

Via Proposition 2 and Cesaro lemma, we conclude that % S Zio1 converges a.s., as 1. goes to
infinity, to z. Finally, we prove that the last term in the right side tends a.s. to zero, as 7 tends
to infinity. In fact, (G,, F,)is a martingale difference sequence with quadratic variation
given by

n

(G), =Y _E(VG)'|Fil,

i1
where VG, = G, — G,-1 = £,(Y, = X)) — E[£,(Y,, — X,,)| Fu—1]. By a simple computation, we
have the almost sure convergence

lim E(VG,)*|F ] = (m2(1 - 2) + m*2%) (0} + 0%).
Therefore, Cesaro lemma ensures that a.s.

fim {Chn _ (mz(1 — z) + m*2*) (o3 + 0%).

n—+oco N

It follows that % £20. Thus, for 7 large enough, we have

Ty as
o iy O 11)

Remark. The convergence in Proposition 2 holds also in L2
Under the hypothesis of Theorem 2, the process of the urn satisfies the following recursions:
Wn+l = VVn +Xn+1§n+1 and Tn+1 = Tn + mYnH + §n+1 (Xn+1 - Yn+l)~ (12)
Next results will be used in the proof of Theorem 2.

Lemma 7. Under the assumptions of Theorem 2, if uy # uy, the proportion of white balls in
the urn after n draws satisfies the stochastic algorithm defined by Eq. (5) where y,, = 1/ T,

f(x) =mluy — py)x(x — 1),
and
AM, 1 = Dyiy — E[Dya[Fol,
with
Dy =& (Zi(Yoin — Xoi1) + Xo1) —mZ, Y0
Proof. We check that, if iy # uy, the assumptions of Definition 1 hold. Indeed,
(i) Eq. (12) shows that

T,=TomS Vit S &(X— V), 13

=1 =1



since the expression of 7, is similar to that in Equation (9), we have the same bound of
v» = 7 defined in Eq. (10).
(ii)
E[(AMy11)*|F) < (2m + m?) (Ao + pye) + 3o + 2mPpy
+ 2 gy + 4P (uy — py )’ = K.

(i) |f(Z0)| = [m(py —px)Zu(Zy —1)| < 2mlpy — px| = Ky,
(IV) [E[yn+1AM’l+1|Fn} STn [E[AM;/HJ'.F';/J = 0 I:‘

Proposition 3. Under the assumptions of Theorem 2, the proportion of white balls in the urn
after n draws, Z,, satisfies a.s.

0 if py < py;
lim 7, =L & x> py;
Zeooy, U py = Hy,

where Z ., is a positive random variable.

Proof. Recall that, if uy # py, Z, satisfies the stochastic algorithm of Lemma 7. As the
function f is continuous, by Theorem 3 we conclude that Z, converges a.s. to the stable zero of
the function /2 with a negative derivative, which is 1 1f uyx > pyand 0if uy < py.

In the case when yy = py, we have Z,,1 = Z, + T”“ where

Pn+1 = Xn+1§n+1 Zn(myn+1 + ‘En-;—l( n+1l — YM+1))-

Since E[P,1|F,] = 0, then Z, is a positive martingale which converges a.s. to a positive
random variable Z,,. [
As a consequence of Proposition 3, we have

Corollary 1. Suppose that py > py, the total number of balls in the urn, T,, satisfies as n
tends to infinity

Remark. The convergence in Corollary 1 holds also in L%
Proof. We have

Tn TO m n 1
7274—;2&4‘% Zé(Xz_Yz)
+ ZY+ (Hy — ”Y)ZZM

where G, = > ", [6(Y; — Xi) — E(&(Y; — X;)|F,,)] is the martingale difference defined in the
proof of Lemma 6. Recall that G, /n converges a.s. to 0 and that Z, converges a.s. to 1 when
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Uy > Uy, . Then, using Cesdro lemma, we obtain the limits requested. If uy, = uy, we have
130, Y converges to puy. [

For the particular case when X,, =Y, for all n, we have the following results

Proposition 4 (/5]). Let (£2;),,, be a sequence of increasing events such that P(U»02;) = 1
If there exists nonnegative Borel measurable function {1}, such that for all Borel sets B

B2 0 W(B)) = /B Fix)dx

then, f = lim_,,  f; exists almost everywhere and f is the density of W.
Lemma 8. Define the events
Q :={W,> mU and B> mU},
then, (£21),5, s a sequence of increasing events, moreover we have P(U082;) = 1
Let (pe) cesupp(x) the distribution of X.

Lemma 9. For a fixed | > 0, there exists a positive constant x, such that, for every
cesuppX), n>l+1, Umn <j < Tiyandk < Um(n+ 1), we have

m ) ) ) 1
ZP(VVM:;+k|m:;+k—cz>spf(l—f%). (14)
i=0

Proof. According to Lemma 4.1 in [5], for Un< j<T;q, n> [ and k<Um(n + 1), the
following holds:

$o(7 et (Tomiction) _Lr Aom-2npnt

' m! 2(m —1)!

; (15)

—1
=0 m

which is a polynomial in T, of degree m with coefficients depending on Wy, By, mand conly.
Letuy 1(c) = Y7 P(Wys1 =] + R|W,, = j + k—ic). Applying Eq. (15) to our model we
have almost surely

m (j+k\ (To—i=k\ [T\
Mn.k(C) - pc Z < ] ) ( ] ) < )
=0 [ m—1 m

TN 1 (1—m—20) ™ (1—m) 1
_ n m—1 . X n m—1 .
pf( ) <m! s T ) (m! oo T )

m

+fi-trofd). @

4.2 Proof of Theorem 1
Recall that (X;),5; (resp (Y7);5,) is a sequence of random variable distributed like X (resp Y).

Y, 0

Proof of claim 1 Theorem 1. In order to describe the asymptotic of the urn’s composition
we use Lemma 6 which gives the estimate of 7}, the total number of balls in the urn after »
draws. For the number of white and blue balls we have, a.s.
w, W,T, B, B, T,
— =7 — and — =+
n T, n n

We consider the urn model evolving by the anti-diagonal matrix @, = (0 Xy )

T, n’



using Eqgs. (8), (11) and Slutsky theorem, we have almost surely, as 7 goes to infinity, Unbalanced
W, B, multi-drawin,
o mfighiyz and =~ mfigiy(1 = 2). e
These convergence hold also in L%

Proof of claim 2 Theorem 1. To establish a central limit theorem, we aim to apply
Theorem 3. Recall that in our model, we have y,, = 1/7,, then we need to find the following 69
limits:

2
lim [E[(%) AM? | F,] and Tim —f (Z,).

n—+oo T},
In fact, in view of Lemma 6, we have 7/ T}, converges a.s. to (m./iixpy )" and
E[(AM, 1)1 Fo] = E[(Duir)*|Fu] + EDul ol
Since E[D,;1|F,)? converges a.s. to (f(2))* = 0, we have,
E((AM1)*| 7] = E[Z) (X = Vo)’ = 22, X0 + Kot (6 F) + mPE(X)
+2m (Z}(E(X®) — pypy) = ZyE(X?)).
Using the fact that

1] =21~ 2) = w7

and that Z, converges a.s. to z, we conclude that E[DZ,,|F,] converges a.s. to G(z) > 0.
Applying Theorem 3, we obtain the following

Vi(Z, —z) 5 N(O ﬂ)

"3mPxpy

VV,Z—ZTn_ Wn Tn
T*ﬂ(n ‘Z) .

Slutsky theorem is enough to conclude the proof.

Since we have

Proof of claim 3 Theorem 1. In this particular case, the claims (1) and (2) apply and the
almost sure limit of the urn’s composition follows immediately as well as a central limit
theorem. Furthermore, as such a case is easier, we can obtain a finer rate of convergence of the
normalized number of balls in the urn. We also give another version of central limit theorem
satisfied by W, using the weak dependence between the variables (&;),,,and the Bernstein’s
method. N

Recall that when Y,, = X, for all #» >0, the urn is evolving according to Eq. (1) with a
replacement matrix given by

0 X,
Q.- ( - ) .
Theorem 1(1) applies for z = 1/2 and the following almost sure results follows:
T, =muyn+o(n), W, = %n +o(n) and B, = %n + o(n).

On the other hand, the total number of balls in the urn is a sum of i.i.d. random variables
T, = To + > 1 X. According to the strong law of large number we get a finer rate of
convergence of 7, we have for § > %
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T, = mpuyn + o(v/nln'’n). (16)
Usmg 7L 2 and Eq. (16), we have

Van( +o(l ))(uxm+0<%>>'

We conclude that the number of white balls in the urn after # draws, W, satisfies almost
surely for 7 large enough

W, :/%ﬂ—FO(\/% In’ n), 6>%.

Remark. Insuchamodel, the proportion of white balls in the urn, Z,,, satisfies the stochastic
approximation algorithm defined by Eq. (5) with y,, = 1/7,,

f(x) = pym(1 — 2x)
and
AMn-H = Xn+1 (Wl - f;wl - WlZn) - ,“Xm(l - ZZn)
Moreover, we propose the following result about the variance of W,,.

Proposition 5. Under the hypothesis of Theorem 1, with Y,y = X,, for alln > 0, the variance
of W, satisfies for every 5 > 1,
m(o% + py) +mc%

Var(W,) = 1

n+o(vnln'n). 17

Proof. Because the number of white balls in the urn satisfies Eq. (6), we write
\/ar(VVn-%—l) = \/CZV(Wn) + \/ar(Xn-H (Wl - §n+1)) + 2 Cov(VVn:XnH (m - fnJrl))'

We have

\/ar(Xn(m - én (Xz)\/m/ m ‘fnﬂ) + \/‘W(X) ((m - §n+1)2)
= (0% + 1) [E(Var(g,1|F.)) + Var(EG | F))) + ZE(m —&,0)") (1)

= (o +/4X)(\/m(mZ,1)+[E(mZn(1 Z) ’;’_1))“2[5(;% &

On the other hand, since the variables (X;),,, are independent then X, ;1 and W, are
independent, thus it follows

Cov(W,, Xu1(m — &,11)) = Cov(W,,, mX, 1) — Cov(W,, Xy18,41)
= —(Cov(VVn, Xn+1§n+1)

W,
T,

W,

=~y [E(W, 7 19)

)+ E(W,)E(

_ _Mﬂx(— (140 (1%)\/07(%)



Using Egs. (18) and (19) and the fact that Z, %5 Las n goes to infinity, we obtain Un_balanged
multi-drawing

2 1 g 2 + + 2 2 1 )
Var(W,.1) = (1 _%Jro(r;%))\/m(m) +m(ax u;j) m 6X+0<%) urn

= a,Var(W,) + b, 71

m(o? 0'2
where a, = (1 _% +o0 (@)) and b _ +ﬂX2 +m lni”
Thus "2 g

sl

Var(W,) = (ﬁ )(\/ar Wo) +§ br )
—0

k=1

There exists a constant a such that [[,_; @ = & (1 +o (1“7:’) ), which leads to

m 2 2 2 1
(UX"‘ﬂi(;)‘FWl UXn+0(\/%ln§1’l),5>é. O
In this particular case, two versions of the central limit theorem for the number of white balls
are proved. The first version is deduced by Theorem 1(2) and the second one is proved using
the weak dependence between the variables (&;);., together with Bernstein’s Method.
Applying Theorem 1(2), we have Y, =X, it follows that gy = uy, by a simple

Var(W,) =

computation for the coefficients q; for: € {0, ..., 4} we have for z = % :
1 m
G(g) =71 (0% + Hy2)-
We conclude that, in distribution we have
I/Vn - %7111

NG —>N(0, %(af( +/4X2)).

A second central limit theorem is satisfied by W,,. As the proof is close to that of Lemma 3
and Theorem 4 in [2], we will mention only the main steps and we refer the reader to [2] for
the details. The idea of the proof is the following: Once we prove that the variables
(X (m — &,)),s0are a-mixing variables with a strong mixing coefficient a(n) = o(In’n/+/n),
5 > 1/2 (see Lemma 3 in [2] for detailed computations), Bernstein’s method (see [17]) will be
suitable. Consider the same notations as in Theorem 4 in [2] with

~ 1 n ¢
& = Xim — &) — pux(m — E(&)), S”:W;é

and N is the centered normal random variable with variance
m
o’ = B [(6% + py) +mPo%].

Actually, all that remains in this case, is to compute the variance of W,,. For that, we use
Proposition 5. As a conclusion,
w,—EW,) o m
7 - N(Q E(Gf( + pix2) +m20§(>.

4.3 Proof of Theorem 2
Theorem 2 deals with unbalanced urn model with diagonal replacement matrix. We applied
Proposition 1 to find the almost sure limit of the proportion of white balls in the urn. The
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stochastic algorithm applies only to the case when py # 1y, because when py = uy we fallon
the case f =0. Furthermore, Theorem 3 does not work, in fact, by a simple computation we
obtain ¢ = 0. Such a result is expected since that even for the case X, = Y, = C(C is
constant) and 7 > 1, the fluctuations of W, /n around its limit has not a normal distribution.

Consider the urn model defined by Eq. (1) with @,, = <é(” (; >
n

Proof of claims 1 and 2 Theorem 2. Corollary 1 ensures that, if yy > uy we have
T, = muxn + o(n).

Indeed,

o Ifuy > puy, wehave, as,
lim W _ lim W In _
notoo N noteo Ty, M it -
~ _1 ~
Moreover, let G, = <H;§11 1+ By, then (G,, F,) is a positive martingale. There
exists a positive number A such that [/} (1 + m%) ~ An’ where p = z—)’: Then, as n tends

to infinity we have
Bn a.s

w o O

where B, is a positive random variable.
-1 -1
« If uy = py, the sequences ( 5+ %)) W, and ( T+ mT”]Y)) B, are F,

-1
-martingales such that (H;El(l + mT”,X)) ~ Bn, where B > 0, then, as » tends to
infinity, we have
w, B, -
25 W, and =B, as.,
n n
where W,, and B,, are positive random variables satisfying By, = mpy — We.

Proof of claim 3 Theorem 2. We consider the case when Y, = X, forallz > 0, The urn
model is then evolving according to the recursive Eq. (1) with the replacement matrix

X, 0
o=y %)
Since Theorem 2(2) applies to that case, we obtain the following strong law of large number
VVn a.s Bﬂ a.s

. W, and ;—>(/¢Xm— W),

where W, is a positive random variable. Furthermore, as 7, is a sum of iid. random
variables then 7, satisfies for every & > }

T, g%n +o(vnln'n), as. (20)

To prove that W, is absolutely continuous, we follow the proof of Theorem 4.2 in [5] and we
give the main steps. The idea is the following: given the sequence of increasing event £;



defined in Lemma 8, if we show that the restriction of W, on every &, ; = {w; W)(w) =} Unbalanced
has a density for each j, with Um < j < Tj_4, then Proposition 4 ensures the existence of the multi-drawing
density of W, almost every where. In fact, for a fixed [ and n>/+ 1, we denote by

= oghtmm P(Wyy, =J + k| W; = j). We have the following inequality: -
Un+1,j 50<k§[1]a)((+1) Z Z PWipnir =7+ kWi =7 +k — CZ)}
<k<Um(n i=0 cesupp(X)
73

< max {Z > PWini =5+ kWi =j+k— CZ)XL(VVlﬂz—]JFkClWVI—])}

<k<
T0<k<Um (n+1) =0 cequpn(X)

Z Z P VVl+n+1 —]+k‘VVl+n—]+k Cl)
SSIJ pr

cesupp(X)

1 K
X max P(Wp., =j+ kW =j)< E (1—-—+——— o,
(Wisn =7 W) =)< P( (n 1)2) J

0<k<Umn cesupp(X) nt

1 K
.
n+l - (n+1)

This implies that there exists some positive constant C(/), depending on/only, such that, for a
fixed / and for all n > + 1, we get

max P(W,=j+klW, =) <H( 1 K) <%. 21)

0<k<m(n—I) l 22 n

Lete > Oand § = 5 and setting x1 < X < X <Xy < ... <X <x,suchthat 30 |x; —x;]
< 6. By Fatou’s lemma we have

D P{m<We<x}ng )< liminf P<x§% < x|W, :j)P(.QL i)
=1

i=1

silim inf(((x;- —x;)n+ 1)%)

n

si(x; —x)C(l)=¢

Then the proof follows.
Outlook: We suggest that if we replace the boundedness hypothesis of the variablesX andY by
the assumption that X and Y have finite moments of order 2, our results remain true.
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