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Abstract
In this paper, we consider a two color multi-drawing urn model. At each discrete time step, we draw uniformly
at random a sample of m balls ðm≥ 1Þ and note their color, they will be returned to the urn together with a
random number of balls depending on the sample’s composition. The replacement rule is a 2 3 2 matrix
depending on bounded discrete positive random variables. Using a stochastic approximation algorithm and
martingales methods, we investigate the asymptotic behavior of the urn after many draws.
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1. Introduction
The classical P�olya urn was introduced by P�olya and Eggenberger [7] describing contagious
diseases. The first model is as follows: An urn contains balls of two colors at the start, white
and blue. At each step, one picks a ball randomly and returns it to the urn with a ball of the
same color. Afterwards, there weremany generalizations and urnmodel become a simple tool
to describe several models such finance, clinical trials (see [19,22]), biology (see [11]), computer
sciences, internet (see [8,18]), etc...

Recently,Mahmoud, Chen,Wei, Kuba and Sulzbach [4,5,12–15], have focused on themulti-
drawing urn. Instead of picking a ball,one picks a sample of m balls (m≥ ‘), say ‘white and
ðm− ‘Þblue balls. The pick is returned back to the urn together with am−‘white and bm−‘ blue
balls, where a‘ and b‘; 0≤ ‘≤m are integers. At first, they treated two particular cases when
{am−‘ ¼ c3 ‘ and bm−‘ ¼ c3 ðm− ‘Þ} and when {am−‘ ¼ c3 ðm− ‘Þ and bm−‘ ¼ c3 ‘},
where c is a positive constant. By different methods as martingales andmoment methods, the
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authors described the asymptotic behavior of the urn composition. When considering the
general case and in order to ensure the existence of a martingale, they supposed thatWn, the
number of white balls in the urn after n draws, satisfies the affinity condition i.e, there exist
two deterministic sequences ðαnÞ and ðβnÞ such that, for all n≥ 0, E½Wnþ1jF n� ¼ αnWn þ βn.
Under this condition, the authors focused on small and large index urns. Later, the affinity
condition was removed in the work of Lasmer, Mailler and Selmi [16], they generalized this
model and looked at the case of more than two colors.

This paper contains the first results about multi drawing P�olya urns with random
replacement rule. Even in the classical P�olya urn, where one ball is picked at every time
step very few results cover the unbalanced case: exceptions are the works of Janson and
Aguech. In [9] Janson studied a generalized urn model containing q different colors
(q≥ 1) with a q3 q replacement matrix A with random entries such that Ai; j ≥ 0 and
EðA2

i; jÞ < ∞ for all i; j ¼ 1; . . . ; q. Janson considered the case when the mean of A is an
irreducible matrix. Using the method of embedding in continuous time of Athrea and
Karlin [3], he gave explicit formulas for the asymptotic variances and covariances as
well as functional limit theorems for the urn. Then, Janson [10] considered a particular
two color P�olya urn model evolving according to a triangular replacement matrix (the
matrix in non irreducible) with deterministic entries. He established theorems describing
the asymptotic behavior of the composition of the urn after n draws. Afterwards,
Aguech [1] extended some results and studied two colors urn model with triangular
replacement matrix. The entries of such a matrix, Xn; Yn and Cn, are positive random
variables with finite means and variances. The embedding in continuous times’ method
were successful once again and he gave theorems about the asymptotic behavior of the
urn’s composition after a long time.

In this paper, we deal with a two color unbalanced urn class with multiple drawing and
random addition matrix. Consider X and Y two discrete-valued random variables. We
assume that there exists two constantsU > 0 and L > 0 such that L≤X ≤U and L≤Y ≤L.
Let ðXnÞn≥0 (resp ðYn≥0Þn≥0) be a sequence of independent random variables distributed likeX
(resp Y). The sequences Xn and Yn are not assumed to be independent.

The model we study is defined as follows: An urn contains initiallyW0 white balls and B0

blue balls, we fix an integer m≥ 1, at a discrete step n≥ 1, we draw uniformly at random a
sample ofmballs, we denote by ξn the number of white balls among thosemballs (we assume
that the initial composition of the urn is more than m to make the first draw possible). We
return the drawn sample together with Qnðξn; m− ξnÞt balls, where Qn is a 2 3 2 matrix
depending on the random variables Xn and Yn. Let us denote byWn (resp Bn) the number of
white balls (resp blue balls), Tn the total number of balls and by Zn the proportion of white
balls in the urn at time n. In other words, the process is defined recursively as follows: for all
n≥ 1 �

Wn

Bn

�
D
�
Wn−1

Bn−1

�
þ Qn

�
ξn

m� ξn

�
: (1)

Let F n be the σ-field generated by the first n draws. Note that, with these notations, we have
for k∈ f0; . . . ;mg;

ℙ½ξn ¼ kjF n−1� ¼
ðWn�1

k

ÞðBn�1
m−k

Þ
ðTn�1

m
Þ : (2)

Thus, conditioning on F n−1 the variable ξn has an hypergeometric distribution with
parameters m; Zn−1 and Tn−1. Some particular cases were the interest of recent works [4,15]
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and [2], where the authors characterized the urn models defined by Eq. (1) for the following
cases

Qn ∈

��
a 0
0 a

�
;

�
0 a

a 0

�
;

�
a 0
0 b

�
;

�
0 a

b 0

��
;

where a; bare strictly positive integers. To generalize the previousworks, we consider the urn
models evolving according to Eq. (1) with

Qn ∈

��
Xn 0
0 Yn

�
;

�
0 Xn

Yn 0

�
;

�
Xn 0
0 Xn

�
;

�
0 Xn

Xn 0

��
:

The main idea is to use the stochastic algorithms and martingales in order to prove that the
number of white balls in the urn converges almost surely and to study its fluctuations around
its limit whenever it is possible.

The paper is organized as follows. In Section 2, we give the main results of the paper.
Section 3 is devoted to the details of the stochastic approximation algorithm’s method. The
proofs of the main results are detailed in Section 4.

2. Main results
We start with some notations. The notation a:s: stands for almost surely. For a random
variable R, we denote by

μR ¼ EðRÞ and σ2
R ¼ VarðRÞ;

by μX :¼ μX1
(respectively μY :¼ μY1

) and σ2
X :¼ σ2

X1
(respectively σ2Y :¼ σ2

Y1
). For xn and yn

two sequences of real numbers such that yn ≠ 0 for all n, we denote xn ¼ oðynÞ (respectively
xn ¼ oðynÞ; a:s) if limn→þ∞xn=yn ¼ 0 (if limn→þ∞xn=yn ¼ 0; a:swhen xn and yn are random).

In this section we state our main result. As mentioned in the introduction, we study urn
models evolving according to Eq. (1). Recall that in the whole of paper we consider ðXnÞn≥1
(resp ðYnÞn≥1), a sequence of independent random variables distributed like X (resp Y).

The present theorem deals with an urn evolving with an anti-diagonal replacement
matrix. The model is then opposite reinforced, i.e the more color is drawn the more it
reinforces the opposite color.

Theorem 1. Let z :¼
ffiffiffiffi
μX

pffiffiffiffi
μX

p þ ffiffiffiffi
μY

p and consider the urn model evolving by the matrix

Qn ¼
�
0 Xn

Yn 0

�
. We have the following results:

(1) The total number of balls in the urn after n draws satisfies

Tn ¼ ffiffiffiffiffiffiffiffiffiffiffi
μXμY

p
m nþ oðnÞ; a:s: (3)

and the number of white and blue balls in the urn after n draws satisfy

Wn ¼ μX ð1� zÞm nþ oðnÞ; a:s:
Bn ¼ μY z m nþ oðnÞ; a:s:

(2) Furthermore, with GðxÞ ¼P4
i¼0 aix

i, the normalized number of white balls in the urn
satisfies the central limit theorem

Wn � zTnffiffiffi
n

p →

D N
�
0;

GðzÞ
3

�
; as n→ þ∞: (4)
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(3) Furthermore, when Yn ¼ Xn for all n≥ 0, the total number of balls in the urn after n

draws satisfies, for any δ > 1
2

Tn ¼ mμXnþ oð ffiffiffi
n

p
lnδ nÞ; a:s:

The number of white balls Wn and blue balls Bn in the urn after n draws satisfy for any
δ > 1

2
;

Wn ¼ mμX
2

nþ oð ffiffiffi
n

p
lnδ nÞ; a:s;

Bn ¼ mμX
2

nþ oð ffiffiffi
n

p
lnδ nÞ; a:s:

We have the convergence in distribution:

lim
n→þ∞

Wn � 1
2
Tn

Σ
ffiffiffi
n

p ¼ Nð0; 1Þ and lim
n→þ∞

Wn � EðWnÞ
Σ1

ffiffiffi
n

p ¼ Nð0; 1Þ;
where

Σ ¼ m

12

�
σ2
X þ μX2

�
and Σ1 ¼ m

12

	�
σ2X þ μX2

�þm2σ2
X



:

Example 1. Let Xn ¼ a and Yn ¼ b (where a and b are not random), then z ¼
ffiffi
a

pffiffi
a

p þ
ffiffi
b

p . This
case was studied in [2] and the authors proved the followingffiffiffi

n
p �

Wn

Tn

� z

�
→

D N ð0;
ffiffiffiffiffi
ab

p

3mð ffiffiffi
a

p þ ffiffiffi
b

p Þ2
Þ; as n→∞:

Under the notation of Theorem 1, we easily compute GðzÞ ¼ mabzð1− zÞ and then the
particular case is proved again.

Example 2. Let Xn ¼ Yn ¼ C (non random), the urn is balanced and the total number of
balls is deterministic and satisfies Tn ¼ T0 þ Cmn. Furthermore, we have μX ¼ C and
σ2X ¼ 0, applying Theorem 1ð3Þwe obtain the following limit:

Wn � Cmn
2ffiffiffi

n
p →

D N ð0; mC2

12
Þ; as n→∞:

Kuba et al. [15] studied this particular case and established such a result via two different
methods: The recursion formulas permit to derive the expression of the higher moments of
the number of white balls and then to conclude functional limit theorem. The same result was
proved via martingales method.

In the following theorem, we consider a diagonal replacement matrixQn. The model is self
reinforced since the rich gets richer. As the particular case when m ¼ 1, we compare μX

μY
with 1, we will distinguish different phases.

Theorem 2. Consider the urn evolving by the matrix Qn ¼
�
Xn 0
0 Yn

�
:

(1) If μX > μY, then the total number of balls in the urn after n draws satisfies

Tn ¼ mμXnþ oðnÞ; a:s:;

and the asymptotic composition of the urn is
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Wn ¼ mμXnþ oðnÞ; Bn ¼ B∞n
ρ þ oðnρÞ; a:s:

where ρ ¼ μY
μX
and B∞ is a positive random variable.

(2) If μX ¼ μY, the composition of the urn after n draws satisfies

Tn ¼ mμXnþ oðnÞ; a:s:

In addition, there exists a positive random variable W∞ such that,

Wn ¼ W∞nþ oðnÞ and Bn ¼ ðμxm�W∞Þ nþ oðnÞ; a:s:

(3) Furthermore, if for all n≥ 0, Yn ¼ Xn, the distribution of the random variable W∞ is
absolutely continuous.

Remark. The case when μX < μY is obtained by interchanging the colors. In fact we have
the following almost sure results:

Tn ¼ mμYnþ oðnÞ; Wn ¼ W∞n
σ þ oðnÞ and Bn ¼ mμYnþ oðnÞ;

where W∞ is a positive random variable and σ ¼ μX
μY
:

Example 3. Aguech [1] studied the particular case when m ¼ 1 and considered the
following triangular replacement matrix�

Xn 0
Cn Yn

�
;

where Xn;Yn and Cn are independent positive random variables with finite means and
variances. Via embedding in continuous timemethod andmartingales, the author proved, for
Cn ¼ 0, the following almost sure results:

(a) If μX > μY ,

Wn ¼ μXnþ oðnÞ; Bn ¼ Dnρ and Tn ¼ μXnþ oðnÞ;
where ρ ¼ μY

μX
and D is a positive random variable.

(b) If μX ¼ μY ,

Wn ¼ μX
W

W þ B
nþ oðnÞ and Bn ¼ μX

B

W þ B
nþ oðnÞ;

where W and B are the almost sure limit of a continuous time martingale.
We prove again these results in Theorem 2 using stochastic approximation algorithm.

Example 4. Chen and Kuba [4] studied the case when Xn ¼ Yn ¼ C (C is non random) and
m≥ 1. They gave explicit expressions of moment of all order of Wn=n and proved that its
almost sure limit,W∞ cannot be an ordinary Beta distribution, unlike the original P�olya urn
model [7] when X ¼ C and m ¼ 1, Eggenberger and P�olya proved in 1923 that the random
variable W∞=C has a Beta distribution with parameters ðB0=C; W0=CÞ. Unfortunately, in
our model we cannot yet derive the expression of higher moments of Wn=n since the
recurrence formulas are too intricate.

3. Some results on stochastic approximation algorithm
The stochastic algorithm approximation plays a crucial role in the proofs in order to describe
the asymptotic composition of the urn. As many versions of the stochastic algorithm exist in
the literature (see [6] for example), we adapt the version of Renlund in [20,21].
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Definition 1. A stochastic approximation algorithm ðUnÞn≥0 is a stochastic process taking
values in ½0; 1� and adapted to a filtration F n that satisfies

Unþ1 � Un ¼ γnþ1ðf ðUnÞ þ ΔMnþ1Þ; (5)

where ðγnÞn≥1 and ðΔMnÞn≥1 are two F n-measurable sequences of random variables, f is a
function from ½0; 1� into ℝ such that f ð0Þ≥ 0, f ð1Þ≤ 0 and the following conditions hold
almost surely: There exists constants c1; c2; KΔ; and Kf positive real numbers such that for
any n≥ 1,

(i) c1
n
≤ γn ≤

c2
n
;

(ii) EððΔMnþ1Þ2jF nÞ ≤ KΔ;

(iii) j f ðUnÞj ≤ Kf ;

(iv) E½γnþ1ΔMnþ1jF n� ¼ 0.

Definition 2. Let Zf ¼ fx∈ ½0; 1�; f ðxÞ ¼ 0g. A zero p∈Zf will be called stable if there
exists a neighborhood N p of p such that f ðxÞðx− pÞ < 0 whenever x∈N pnfpg: If f is
differentiable, then f 0ðpÞ is sufficient to determine that p is stable.

Remark. Note that Assumption ðiiÞ in Definition 1 is not stated as in [20] where it is
assumed that there exists a positive constant KΔ such that jΔMnj≤KΔ.

We have the following result about the process defined by Eq. (5)

Proposition 1. Let ðUnÞn≥0 be a stochastic algorithm defined by Eq. (5). If f is continuous,
then limn→þ∞Un exists almost surely and is a stable zero of f .

The following lemmas will be useful for the proof of Proposition 1.

Lemma 1. Define Vn ¼
Pn

i¼1 γiΔMi. Under the assumptions of Proposition 1, Vn converges
almost surely.

Proof. Under the assumptions mentioned in Definition 1, we have

EðVnþ1jF nÞ ¼ Vn þ Eðγnþ1ΔMnþ1jF nÞ ¼ Vn:

We deduce that ðVn; F nÞn is a martingale. On the other hand,

E
�
V 2

n

� ¼Xn
i¼1

E
�
γ2i ðΔMiÞ2Þ≤

Xn
i¼1

c22
i2
E
�ðΔMiÞ2Þ≤KΔc

2
2

Xn
i¼1

1

i2
< ∞:

It follows that ðVnÞn is an L2- bounded martingale, and thus, it converges almost surely. ,

Next lemma ensures that, under the assumptions of Proposition 1, all possible candidates
for the almost sure limit of Un are necessary among the zeros of f .

Lemma 2 ([20] ). Let Zf ¼ fx ; f ðxÞ ¼ 0g be the set of zeros of f and let CðUnÞ be the set
of limit points of fUng defined by

CðUnÞ ¼
\
n≥1

fUn; Unþ1; . . . g;

where A denotes the closure of a set A. Under the assumptions of Proposition 1, if f is
continuous, then,

ℙðCðUnÞ⊆Zf Þ ¼ 1:
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Lemma 3 ([20] ). Suppose that f ðxÞ < − δ (or f ðxÞ > δ) for some δ > 0, whenever
x∈ ða0; b0Þ. Then,

CðUnÞ
\

ða0; b0Þ ¼ 0= a:s:;

and either lim supn Un ≤ a0 or lim infn Un ≥ b0:
We are now able to handle the proof of Proposition 1.

Proof of Proposition 1. The proof is close to Theorem 1 in [20], for the convenience of
the reader, we resume the proof and we mention the main steps. If limn→þ∞Un does not exist,
we can find two rational numbers in the open interval

�lim inf n→þ∞Un; lim sup n→þ∞Un½. Let lim infUn < p < q < lim supUn be two arbitrary
different rational numbers. If we can show that

ℙðflim infUn ≤ pg∩flim supUn ≥ qgÞ ¼ 0;

then, the existence of the limit will be established and the claim of the proposition follows
from Lemma 2. For this reason, we need to distinguish two different cases whether or not p
and q are in the same connected component of Zf .

Case 1: p and q are not in the same connected component of Zf : Since Zf is closed
and f is continuous there must exist ½a; b� ⊆ ½p; q�TZc

f such that f is non-zero and has
a constant sign for all x∈ ða; bÞ. By Lemma 3, it is impossible to have lim infn Un ≤ a
and lim supn Un ≥ b.

Case 2: p and q are in the same connected component of Zf : In all the cases of our
frameworkZf is a set of two isolated points, therefore we are not interested to the case when p
and q are not in the same connected component.

To establish that the almost sure limit of Un is among the stable point set, we refer the
reader to [20] to see a detailed proof. ,

Next result is due to Renlund [21] which will be used in the proofs of Theorems 1 and 2.

Theorem 3 ([21]). Let ðUnÞn≥0 satisfy Eq. (5) and that limn→þ∞ Un ¼ U*. Let

bγn :¼ nγn bf ðUn−1Þ; where bf ðxÞ ¼ f ðxÞ
U * � x

:

If bγn converges almost surely to some limit bγ > 1
2 and if E½ðnγnΔMnÞ2jF n−1�→ σ2 > 0; then,

we have the convergence in distributionffiffiffi
n

p ðUn � U *Þ→D N
�
0;

σ2

2bγ � 1

�
:

4. Proof of the main results
4.1 Prerequisite for the proofs of the main results
We show in the following that the stochastic approximation algorithm is a fruitful method
to study unbalanced urn models. Although there are few versions of such a method that
permit to γn to be random, the version of Renlund [20] and [21] applies to our model.

Under the assumptions of Theorem 1 and according to Eq. (1), the compositions of the urn
satisfy the following recursions:

Wnþ1 ¼ Wn þ Xnþ1ðm� ξnþ1Þ (6)

and
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Tnþ1 ¼ Tn þmXnþ1 þ ξnþ1ðYnþ1 � Xnþ1Þ: (7)

We start with first results that will be useful for the proof of Theorem 2.

Lemma 4 (Technical Lemma). For all integers m;A;B such that m ≤ Aþ B we haveXm
m¼0

k

�
A

k

��
B

m� k

�
¼ A

�
Aþ B� 1
m� 1

�
and Xm

m¼0

k2
�
A

k

��
B

m� k

�
¼ AðA� 1Þ

�
Aþ B� 2
m� 2

�
þ A

�
Aþ B� 1
m� 1

�

Remark. Since conditioning on F n−1 the variable ðξnÞ has an hypergeometric distribution
with parameters m, Zn−1 and Tn−1, it follows from Lemma 4 the following:

EðξnjF n−1Þ ¼ mZn;

and

VarðξnjF n−1Þ ¼ mZn−1ð1� Zn−1ÞTn−1 �m

Tn−1 � 1
:

Lemma 5. Under the assumptions of Theorem 1, the proportion of white balls after n draws,
Zn, satisfies the stochastic algorithm defined by (5), where γn ¼ 1

Tn
,

f ðxÞ ¼ mðμX � μY Þx2 � 2μXmxþ μXm;

and

ΔMnþ1 ¼ Dnþ1 � E½Dnþ1jF n�;
with

Dnþ1 ¼ ξnþ1ðZnðXnþ1 � Ynþ1Þ � Xnþ1Þ þmXnþ1ð1� ZnÞ:
Proof. In view of the recursions in Equations (6), (7) we have

Znþ1 � Zn ¼ 1

Tnþ1

½Wn þ Xnþ1ðm� ξnþ1Þ � ZnðTn þmXnþ1 þ ξnþ1ðYnþ1 � Xnþ1ÞÞ�
¼ 1

Tnþ1

½Xnþ1ðm� ξnþ1Þ � ZnðmXnþ1 þ ξnþ1ðYnþ1 � Xnþ1ÞÞ�
¼ Dnþ1

Tnþ1

:

An easy computation shows that EðDnþ1jF nÞ ¼ mðμX − μY ÞZ 2
n − 2mμXZn þmμX . ,

Using Proposition 1,we show that the almost sure limit of the proportion of white balls in the
urn depends on the means of the variables Xn and Yn:

Proposition 2. The proportion of white balls in the urn after ndraws, under the assumptions
of Theorem 1, satisfies
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lim
n→þ∞

Zn ¼ z :¼
ffiffiffiffiffiffi
μX

pffiffiffiffiffiffi
μX

p þ ffiffiffiffiffiffi
μY

p ; a:s: (8)

Proof. In view of Lemma 5, we check the assumptions of Definition 1, indeed,

(i) an easy computation shows that

Tn ¼ T0 þm
Xn
i¼1

ðm� ξiÞXi þ
Xn
i¼1

ξiYi: (9)

Since for all n≥ 1 we have 0 ≤ ξn ≤ m, L ≤ Xn ≤ U and L ≤ Yn ≤ U, then

mnL ≤ Tn ≤ T0 þmnU :

Then the following bound holds, for all n ≥ 1

c1

n
≤

1

Tn

≤
c2

n
; (10)

with c1 ¼ 1
T0þmU

and c2 ¼ 1
mL

:
(ii)

E
	ðΔMnþ1Þ2jF n



≤
�
μðX�Y Þ2 þ 3μX

��
mþm2

�þ 5m2μX2 þ 2m2μXμY

þm2ðjμX � μY j þ 3μX Þ ¼ KΔ;

(iii) jf ðZnÞj≤mðjμY − μX j þ 3μX Þ ¼ Kf ;

(iv) E
h

1
Tnþ1

ΔMnþ1jF n

i
≤ 1

Tn
E½ΔMnþ1jF n� ¼ 0:

Since the function f , defined in Lemma 5, is continuous, we conclude by Proposition 1, that the
process Zn converges a:s: to

z ¼
ffiffiffiffiffiffi
μX

pffiffiffiffiffiffi
μX

p þ ffiffiffiffiffiffi
μY

p ;

which is the unique zero of f with negative derivative. ,
The following Lemma will intervene in the proof of Theorem.

Lemma 6. Under the assumptions of Theorem 1, the total number of balls after n draws
satisfies

lim
n→þ∞

Tn

n
¼ m

ffiffiffiffiffiffiffiffiffiffiffi
μXμY

p
; a:s:

Proof. Let Gn ¼
Pn

i¼1½ξiðYi −XiÞ � E½ξiðYi −XiÞjF i�1��; by the recursive Eq. (7), we have
Tn

n
¼ T0

n
þm

n

Xn
i¼1

Xi þmðμY � μX Þ
n

Xn
i¼1

Zi−1 þ Gn

n
:
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Since ðXiÞi≥1 are i.i.d. random variables, then by the strong law of large numbers we have

m

n

Xn
i¼1

Xi !a:s mμX :

Via Proposition 2 and Ces�aro lemma, we conclude that 1
n

Pn
i¼1Zi−1 converges a:s:, as ngoes to

infinity, to z. Finally, we prove that the last term in the right side tends a:s: to zero, as n tends
to infinity. In fact, ðGn; F nÞ is a martingale difference sequence with quadratic variation
given by

hGin ¼
Xn
i¼1

E½ð∇GiÞ2jF i−1�;

where ∇Gn ¼ Gn −Gn−1 ¼ ξnðYn −XnÞ− E½ξnðYn −XnÞjF n−1�. By a simple computation, we
have the almost sure convergence

lim
n→þ∞

E½ð∇GnÞ2jF n−1� ¼
�
mzð1� zÞ þm2z2Þ�σ2

Y þ σ2X
�
:

Therefore, Ces�aro lemma ensures that a:s:

lim
n→þ∞

hGin
n

¼ �mzð1� zÞ þm2z2Þ�σ2
Y þ σ2X

�
:

It follows that Gn

n !a:s 0. Thus, for n large enough, we have
Tn

n
!a:s m ffiffiffiffiffiffiffiffiffiffiffi

μXμY
p

: , (11)

Remark. The convergence in Proposition 2 holds also in L2.

Under the hypothesis of Theorem 2, the process of the urn satisfies the following recursions:

Wnþ1 ¼ Wn þ Xnþ1ξnþ1 and Tnþ1 ¼ Tn þmYnþ1 þ ξnþ1ðXnþ1 � Ynþ1Þ: (12)

Next results will be used in the proof of Theorem 2.

Lemma 7. Under the assumptions of Theorem 2, if μX ≠ μY, the proportion of white balls in
the urn after n draws satisfies the stochastic algorithm defined by Eq. (5) where γn ¼ 1=Tn,

f ðxÞ ¼ mðμY � μX Þxðx� 1Þ;
and

ΔMnþ1 ¼ Dnþ1 � E½Dnþ1jF n�;
with

Dnþ1 ¼ ξnþ1ðZnðYnþ1 � Xnþ1Þ þ Xnþ1Þ �mZnYnþ1:

Proof. We check that, if μX ≠ μY , the assumptions of Definition 1 hold. Indeed,

(i) Eq. (12) shows that

Tn ¼ T0 þm
Xn
i¼1

Yi þ
Xn
i¼1

ξiðXi � YiÞ; (13)
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since the expression ofTn is similar to that in Equation (9), we have the same bound of
γn ¼ 1

Tn
defined in Eq. (10).

(ii)

E
	ðΔMnþ1Þ2jF n



≤
�
2mþm2

��
4μX2 þ μY 2

�þ 3m2μY 2 þ 2m2μX

þ 2m2μXμY þ 4m2ðμX � μY Þ2 ¼ KΔ:

(iii) jf ðZnÞj ¼ jmðμY − μX ÞZnðZn − 1Þj≤ 2mjμY − μX j ¼ Kf ;

(iv) E½γnþ1ΔMnþ1jF n�≤ 1
Tn
E½ΔMnþ1jF n� ¼ 0: ,

Proposition 3. Under the assumptions of Theorem 2, the proportion of white balls in the urn
after n draws, Zn, satisfies a:s:

lim
n→þ∞

Zn ¼
8<: 0; if μX < μY ;

1; if μX > μY ;
~Z∞; if μX ¼ μY ;

where ~Z∞ is a positive random variable.

Proof. Recall that, if μX ≠ μY , Zn satisfies the stochastic algorithm of Lemma 7. As the
function f is continuous, by Theorem 3we conclude that Zn converges a:s: to the stable zero of
the function hwith a negative derivative, which is 1 if μX > μY and 0 if μX < μY :

In the case when μX ¼ μY , we have Znþ1 ¼ Zn þ Pnþ1

Tnþ1
, where

Pnþ1 ¼ Xnþ1ξnþ1 � ZnðmYnþ1 þ ξnþ1ðXnþ1 � Ynþ1ÞÞ:

Since E½Pnþ1jF n� ¼ 0, then Zn is a positive martingale which converges a:s: to a positive
random variable ~Z∞. ,

As a consequence of Proposition 3, we have

Corollary 1. Suppose that μX ≥ μY, the total number of balls in the urn, Tn, satisfies as n
tends to infinity

lim
n→þ∞

Tn

n
¼ mμX ; a:s:

Remark. The convergence in Corollary 1 holds also in L2.

Proof. We have

Tn

n
¼ T0

n
þm

n

Xn
i¼1

Yi þ 1

n

Xn
i¼1

ξiðXi � YiÞ

¼ T0

n
þm

n

Xn
i¼1

Yi þmðμX � μY Þ
n

Xn
i¼1

Zi−1 � Gn

n
;

where Gn ¼
Pn

i¼1½ξiðYi −XiÞ− EðξiðYi −XiÞjF nÞ� is the martingale difference defined in the
proof of Lemma 6. Recall that Gn=n converges a:s: to 0 and that Zn converges a:s: to 1 when
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μX > μY , . Then, using Ces�aro lemma, we obtain the limits requested. If μX ¼ μY , we have
1
n

Pn

i¼1Yi converges to μX . ,

For the particular case when Xn ¼ Yn for all n, we have the following results

Proposition 4 ([5] ). Let ðΩlÞl≥0 be a sequence of increasing events such that ℙð∪l≥0ΩlÞ ¼ 1.
If there exists nonnegative Borel measurable function fflgl≥1 such that for all Borel sets B

ℙ
�
Ωl ∩ W−1

∞
ðBÞ� ¼ Z

B

flðxÞdx

then, f ¼ liml→þ∞ fl exists almost everywhere and f is the density of W∞.

Lemma 8. Define the events

Ωl :¼ fWl ≥ mU and Bl ≥ mUg;
then, ðΩlÞl≥0 is a sequence of increasing events, moreover we have ℙð∪l≥0ΩlÞ ¼ 1.

Let ðpcÞc∈suppðXÞ the distribution of X.

Lemma 9. For a fixed l > 0, there exists a positive constant κ, such that, for every
c∈ suppðXÞ, n≥ l þ 1, Um ≤ j ≤ Tl−1 and k ≤ Umðnþ 1Þ, we haveXm

i¼0

ℙðWnþ1 ¼ jþ kjWn ¼ jþ k� ciÞ≤ pcð1� 1

n
þ κ

n2
Þ: (14)

Proof. According to Lemma 4.1 in [5], for Um≤ j≤Tl−1, n≥ l and k≤Umðnþ 1Þ, the
following holds:Xm

i¼0

�
jþ cðk� iÞ

i

��
Tn � j� cðk� iÞ

m� i

�
¼ Tm

n

m!
þ ð1�m� 2cÞTm−1

n

2ðm� 1Þ! þ � � � ; (15)

which is a polynomial inTn of degreemwith coefficients depending onW0; B0; mand conly.
Let un; kðcÞ ¼

Pm
i¼0 ℙðWnþ1 ¼ jþ kjWn ¼ jþ k− icÞ. Applying Eq. (15) to our model we

have almost surely

un; kðcÞ ¼ pc
Xm
i¼0

 
jþ k

i

! 
Tn � j� k

m� i

! 
Tn

m

!−1

¼ pc

 
Tn

m

!−1�
Tm

n

m!
þ ð1�m� 2cÞ

ðm� 1Þ! Tm−1
n þ � � �

�
3

�
Tm

n

m!
þ ð1�mÞ
2ðm� 1Þ!T

m−1
n þ � � �

�−1

¼ pc

�
1� 1

n
þ O

�
1

n2

��
: ,

4.2 Proof of Theorem 1
Recall that ðXiÞi≥1 (resp ðYiÞi≥1) is a sequence of random variable distributed like X (resp Y).

We consider the urn model evolving by the anti-diagonal matrix Qn ¼
�
0 Xn

Yn 0

�
.

Proof of claim 1 Theorem 1. In order to describe the asymptotic of the urn’s composition
we use Lemma 6 which gives the estimate of Tn, the total number of balls in the urn after n
draws. For the number of white and blue balls we have, a:s:

Wn

n
¼ Wn

Tn

Tn

n
and

Bn

n
¼ Bn

Tn

Tn

n
;
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using Eqs. (8), (11) and Slutsky theorem, we have almost surely, as n goes to infinity,

Wn

n
→m

ffiffiffiffiffiffiffiffiffiffiffi
μXμY

p
z and

Bn

n
→m

ffiffiffiffiffiffiffiffiffiffiffi
μXμY

p ð1� zÞ:
These convergence hold also in L2.

Proof of claim 2 Theorem 1. To establish a central limit theorem, we aim to apply
Theorem 3. Recall that in our model, we have γn ¼ 1=Tn, then we need to find the following
limits:

lim
n→þ∞

E½
�

n

Tn

�2

ΔM 2
nþ1jF n� and lim

n→þ∞

n

Tn

f
0 ðZnÞ:

In fact, in view of Lemma 6, we have n=Tn converges a:s: to ðm ffiffiffiffiffiffiffiffiffiffiffi
μXμY

p Þ−1 and
E
	ðΔMnþ1Þ2jF n


 ¼ E
	ðDnþ1Þ2jF n


þ E½Dnþ1jF n�2:
Since E½Dnþ1jF n�2 converges a:s: to ðf ðzÞÞ2 ¼ 0, we have,

E
�ðΔMnþ1Þ2jF n


 ¼ E
	
Z 2
n ðXnþ1 � Ynþ1Þ2 � 2ZnXnþ1 þ Xnþ1jF n



E
	
ξ2nþ1jF n


þm2E
�
X 2
�

þ 2m2
�
Z 2
n ðEðX 2

�� μXμY Þ � ZnE
�
X 2
�Þ:

Using the fact that

E
	
ξ2nþ1jF n


 ¼ mZnð1� ZnÞTn �m

Tn � 1
þm2Z 2

n

and that Zn converges a:s: to z, we conclude that E½D2
nþ1jF n� converges a:s: to GðzÞ > 0:

Applying Theorem 3, we obtain the followingffiffiffi
n

p ðZn � zÞ→L N
�
0;

GðzÞ
3m2μXμY

�
:

Since we have

Wn � zTnffiffiffi
n

p ¼ ffiffiffi
n

p �
Wn

Tn

� z

�
Tn

n
;

Slutsky theorem is enough to conclude the proof.

Proof of claim 3 Theorem 1. In this particular case, the claims (1) and (2) apply and the
almost sure limit of the urn’s composition follows immediately as well as a central limit
theorem. Furthermore, as such a case is easier, we can obtain a finer rate of convergence of the
normalized number of balls in the urn. We also give another version of central limit theorem
satisfied byWn using the weak dependence between the variables ðξiÞi≥0 and the Bernstein’s
method.

Recall that when Yn ¼ Xn for all n≥ 0, the urn is evolving according to Eq. (1) with a
replacement matrix given by

Qn ¼
�
0 Xn

Xn 0

�
:

Theorem 1ð1Þ applies for z ¼ 1=2 and the following almost sure results follows:

Tn ¼ mμXnþ oðnÞ; Wn ¼ mμX
2

nþ oðnÞ and Bn ¼ mμX
2

nþ oðnÞ:
On the other hand, the total number of balls in the urn is a sum of i.i.d. random variables
Tn ¼ T0 þ

Pn
i¼1Xi. According to the strong law of large number we get a finer rate of

convergence of Tn, we have for δ > 1
2
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Tn ¼ mμXnþ o
� ffiffiffi

n
p

lnδn
�
: (16)

Using Wn

n
¼ Wn

Tn

Tn

n
and Eq. (16), we have

Wn

n
¼a:s ð1

2
þ oð1ÞÞ

�
μXmþ o

�
lnδnffiffiffi
n

p
��

:

We conclude that the number of white balls in the urn after n draws, Wn, satisfies almost
surely for n large enough

Wn ¼ μXm
2

nþ o
� ffiffiffi

n
p

lnδ n
�
; δ >

1

2
:

Remark. In such amodel, the proportion of white balls in the urn, Zn, satisfies the stochastic
approximation algorithm defined by Eq. (5) with γn ¼ 1=Tn,

f ðxÞ ¼ μXmð1� 2xÞ
and

ΔMnþ1 ¼ Xnþ1ðm� ξnþ1 �mZnÞ � μXmð1� 2ZnÞ:
Moreover, we propose the following result about the variance of Wn.

Proposition 5. Under the hypothesis of Theorem 1, with Yn ¼ Xn for all n≥ 0, the variance
of Wn satisfies for every δ > 1

2;

VarðWnÞ ¼
m
�
σ2
X þ μ2X

�þm2σ2X
12

nþ o
� ffiffiffi

n
p

lnδn
�
: (17)

Proof. Because the number of white balls in the urn satisfies Eq. (6), we write

VarðWnþ1Þ ¼ VarðWnÞ þVarðXnþ1ðm� ξnþ1ÞÞ þ 2 ℂovðWn;Xnþ1ðm� ξnþ1ÞÞ:
We have

VarðXnðm� ξnÞÞ ¼ E
�
X 2
�
Varðm� ξnþ1Þ þVarðXÞE�ðm� ξnþ1Þ2Þ

¼ �σ2X þ μ2X
�½EðVarðξnþ1jF nÞÞ þVarðEðξnþ1jF nÞÞ� þ σ2

xE
�ðm� ξnþ1Þ2Þ

¼ �σ2x þ μX2

��
VarðmZnÞ þ E

�
mZnð1� ZnÞTn �m

Tn � 1

��
þ σ2XEðm� ξnÞ2:

(18)

On the other hand, since the variables ðXiÞi≥0 are independent then Xnþ1 and Wn are
independent, thus it follows

ℂovðWn; Xnþ1ðm� ξnþ1ÞÞ ¼ ℂovðWn; mXnþ1Þ � ℂovðWn; Xnþ1ξnþ1Þ
¼ −ℂovðWn; Xnþ1ξnþ1Þ

¼ −mμX ½EðWn

Wn

Tn

Þ þ EðWnÞEðWn

Tn

Þ�

¼ −mμX ð
1

mμX
ð1þ oðln

δ
nffiffiffi
n

p ÞÞVarðWnÞÞ

(19)
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Using Eqs. (18) and (19) and the fact that Zn →
a:s 1

2 as n goes to infinity, we obtain

VarðWnþ1Þ ¼ ð1� 2

n
þ oðlnδn

n
3
2

ÞÞVarðWnÞ þ
m
�
σ2X þ μX2

�þm2σ2X
4

þ o

�
lnδnffiffiffi
n

p
�

¼ anVarðWnÞ þ bn;

where an ¼ ð1− 2
n
þ oðlnδn

n
3
2

ÞÞ and bn ¼ mðσ2
X
þμ

X2 Þþm2σ2
X

4
þ o

�
lnδnffiffi

n
p
�
:

Thus,

VarðWnÞ ¼ ðYn
k¼1

akÞðVarðW0Þ þ
Xn�1

k¼0

bkYk
j¼0

aj
Þ:

There exists a constant a such that
Qn

k¼1 ak ¼ ea

n2

�
1þ o

�
lnδnffiffi

n
p
��

, which leads to

VarðWnÞ ¼
m
�
σ2
X þ μX2

�þm2σ2X
12

nþ o
� ffiffiffi

n
p

lnδn
�
; δ >

1

2
: ,

In this particular case, two versions of the central limit theorem for the number of white balls
are proved. The first version is deduced by Theorem 1(2) and the second one is proved using
the weak dependence between the variables ðξiÞi≥1 together with Bernstein’s Method.

Applying Theorem 1(2), we have Yn ¼ Xn, it follows that μY ¼ μX , by a simple
computation for the coefficients ai for i∈ f0; . . . ; 4gwe have for z ¼ 1

2 :

Gð1
2
Þ ¼ m

4

�
σ2X þ μX2

�
:

We conclude that, in distribution we have

Wn � 1
2
Tnffiffiffi

n
p →N

�
0;

m

12
ðσ2

X þ μX2

��
:

A second central limit theorem is satisfied by Wn. As the proof is close to that of Lemma 3
and Theorem 4 in [2], we will mention only the main steps and we refer the reader to [2] for
the details. The idea of the proof is the following: Once we prove that the variables
ðXnðm − ξnÞÞn≥0 are α-mixing variables with a strongmixing coefficient αðnÞ ¼ oðlnδn= ffiffiffi

n
p Þ,

δ > 1=2 (see Lemma 3 in [2] for detailed computations), Bernstein’s method (see [17]) will be
suitable. Consider the same notations as in Theorem 4 in [2] with

~ξi ¼ Xiðm� ξiÞ � μX ðm� EðξiÞÞ; Sn ¼ 1ffiffiffi
n

p
Xn
i¼1

~ξi

and N is the centered normal random variable with variance

σ2 ¼ m

12

	�
σ2X þ μX2

�þm2σ2
X



:

Actually, all that remains in this case, is to compute the variance of Wn. For that, we use
Proposition 5. As a conclusion,

Wn � EðWnÞffiffiffi
n

p →

D N
�
0;

m

12
ðσ2X þ μX2

�þm2σ2
X

�
:

4.3 Proof of Theorem 2
Theorem 2 deals with unbalanced urn model with diagonal replacement matrix. We applied
Proposition 1 to find the almost sure limit of the proportion of white balls in the urn. The
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stochastic algorithm applies only to the case when μX ≠ μY , because when μX ¼ μY we fall on
the case f ≡ 0. Furthermore, Theorem 3 does not work, in fact, by a simple computation we
obtain σ ¼ 0. Such a result is expected since that even for the case Xn ¼ Yn ¼ C(C is
constant) andm > 1, the fluctuations ofWn=n around its limit has not a normal distribution.

Consider the urn model defined by Eq. (1) with Qn ¼
�
Xn 0
0 Yn

�
.

Proof of claims 1 and 2 Theorem 2. Corollary 1 ensures that, if μX ≥ μY we have

Tn ¼ mμXnþ oðnÞ:
Indeed,

� If μX > μY , we have, a.s.,

lim
n→þ∞

Wn

n
¼ lim

n→þ∞

Wn

Tn

Tn

n
¼ mμX :

Moreover, let ~Gn ¼
�Qn�1

i¼1 ð1þ mμY
Ti

��−1

Bn; then ð~Gn; F nÞ is a positive martingale. There

exists a positive number A such that
Qn�1

i¼1

�
1þ mμY

Ti

�
’ Anρ where ρ ¼ μY

μX
. Then, as n tends

to infinity we have

Bn

nρ
!a:s B∞;

where B∞ is a positive random variable.

• If μX ¼ μY , the sequences
�Qn�1

i¼1 ð1þ mμX
Ti

Þ
�−1

Wn and
�Qn�1

i¼1 ð1þ mμY
Ti

Þ
�−1

Bn areF n

-martingales such that
�Qn�1

i¼1 ð1þ mμX
Ti

Þ
�−1

’ Bn; where B > 0, then, as n tends to

infinity, we have

Wn

n
→W∞ and

Bn

n
→

~B∞; a:s:;

where W∞ and ~B∞ are positive random variables satisfying ~B∞ ¼ mμX −W∞:

Proof of claim 3 Theorem 2.We consider the case when Yn ¼ Xn for all n ≥ 0, The urn
model is then evolving according to the recursive Eq. (1) with the replacement matrix

Qn ¼
�
Xn 0
0 Xn

�
:

Since Theorem 2ð2Þ applies to that case, we obtain the following strong law of large number

Wn

n
!a:sW∞ and

Bn

n
!a:sðμXm�W∞Þ;

where W∞ is a positive random variable. Furthermore, as Tn is a sum of i.i.d. random
variables then Tn satisfies for every δ > 1

2

Tn ¼a:s μXm
2

nþ o
� ffiffiffi

n
p

lnδn
�
; a:s: (20)

To prove thatW∞ is absolutely continuous, we follow the proof of Theorem 4.2 in [5] and we
give the main steps. The idea is the following: given the sequence of increasing event Ωl
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defined in Lemma 8, if we show that the restriction of W∞ on every Ωl; j ¼ fω; WlðωÞ ¼ jg
has a density for each j, withUm ≤ j ≤ Tl−1, then Proposition 4 ensures the existence of the
density of W∞ almost every where. In fact, for a fixed l and n≥ l þ 1, we denote by
vn; j ¼ max

0≤k≤Umn
ℙðWlþn ¼ jþ kjWl ¼ jÞ. We have the following inequality:

vnþ1; j ≤ max
0≤k≤Umðnþ1Þ

(Xm
i¼0

X
c∈suppðXÞ

ℙðWlþnþ1 ¼ jþ kjWlþn ¼ jþ k� ciÞ
)

≤ max
0≤k≤Umðnþ1Þ

(Xm
i¼0

X
c∈suppðXÞ

ℙðWlþnþ1 ¼ jþ kjWlþn ¼ jþ k� ciÞ 3 ℙðWlþn ¼ jþ k� cijWl ¼ jÞ
)

≤ max
0≤k≤Umðnþ1Þ

Xm
i¼0

X
c∈suppðXÞ

ℙðWlþnþ1 ¼ jþ kjWlþn ¼ jþ k� ciÞ

3 max
0≤~k≤Umn

ℙðWlþn ¼ jþ ~kjWl ¼ jÞ≤
X

c∈suppðXÞ
pc

�
1� 1

nþ l
þ κ

ðnþ lÞ2
�
vn;j

¼
�
1� 1

nþ l
þ κ

ðnþ lÞ2
�
vn;j:

This implies that there exists some positive constantCðlÞ, depending on l only, such that, for a
fixed l and for all n≥ l þ 1, we get

max
0≤k≤mðn−lÞ

ℙðWn ¼ jþ kjWl ¼ jÞ≤
Yn
i¼l

�
1� 1

i
þ κ

i2

�
≤
CðlÞ
n

: (21)

Let ε > 0and δ ¼ ε
CðlÞ, and setting x1 < x

0
1 ≤ x2 < x

0
2 ≤ . . . ≤ xr < x

0
r such that

Pr
i¼1jx

0
i − xij

≤ δ: By Fatou’s lemma we haveXr
i¼1

ℙðfxi ≤W∞ ≤ x
0 g ∩ Ωl; jÞ≤

Xr
i¼1

lim inf ℙ

�
xi ≤

Wn

n
≤ x

0
ijWl ¼ j

�
ℙðΩl; jÞ

≤
Xr
i¼1

lim inf

���
x
0
i � xi

�
nþ 1ÞCðlÞ

n

�

≤
Xr
i¼1

�
x
0
i � xi

�
CðlÞ ¼ ε:

Then the proof follows.
Outlook:We suggest that if we replace the boundedness hypothesis of the variablesX andY by
the assumption that X and Y have finite moments of order 2, our results remain true.
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