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Abstract
We propose in this paper a novel reliable detection method to recognize forged inpainting images. Detecting
potential forgeries and authenticating the content of digital images is extremely challenging and important for
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many applications. The proposed approach involves developing new probabilistic support vector machines
(SVMs) kernels from a flexible generative statistical model named “bounded generalized Gaussian mixture
model”. The developed learning framework has the advantage to combine properly the benefits of both
discriminative and generativemodels and to include prior knowledge about the nature of data. It can effectively
recognize if an image is a tampered one and also to identify both forged and authentic images. The obtained
results confirmed that the developed framework has good performance under numerous inpainted images.

Keywords Forgery detection, Mixture models, Bounded generalized Gaussian mixture model, SVM kernels,

Statistical machine learning, Big data

Paper type Original Article

1. Introduction
With the advancements in computer-related technologies more multimedia data are created in
digital formallowingeasycontrol over thehandling, collection, and storageof suchdata.The rapid
technological advances have amplified the amount of multimedia data generated every day.
Analyzing these huge data is generally known as the BIG DATA analysis problem. This is
especially true forvisualdata (imagesandvideos)generated in theWebandsocialnetworks.These
multimedia data can be used for example to discover digital evidences before, when, after a
cybernetic security attack has occurred [1]. This scenario is often called digital forensics. The
challengingproblem in this case is the insuranceof thecompletionofevidenceswhich is considered
one of the high priority principals that must be taken into account in any forensics investigation.
Indeed, if some parts are deleted from original image, it will be very difficult to investigate
forensically. Furthermore, any missing data can lead to erroneous investigation conclusions and
make the evidences lose their credibility in the judiciary court. Today’s digital image forensics has
become an emerging research field due to this big amount of generated digital image files [2,3] In
this context, digital images and videos can be used for example for inpainting purposes. Indeed,
image (resp. video) inpainting [4–6] is one of the interesting techniques used for data restoration
that can restore lost and deteriorated information. Inpainting is known as a problem of filling the
missing content in an image in order to repair a possible damage andmanipulation. This research
topic has positive impact for a variety of applications such as restoring old corrupted films and
movies, producing new stories, improving the quality of noisy movies, etc.

Existing inpainting techniques can be divided into two categories: interpolation-based
methods, and exemplar-based methods. The interpolation-based methods perform filling-in the
areas by interpolation of the available datamostly using non-linear partial differential equations
(PDEs) [7]. The exemplar-based methods on the other hand are very similar to the texture
synthesis-based image inpainting methods, except that the texture (structure) sampling task is
carriedoutbyconsideringall the framesandalso themovingobjects, notonlya single imageas in
the case of the texture synthesis-based image inpainting techniques [4]. Criminisi’s algorithm [4]
is one of the most known algorithms among other exemplar-based inpainting approaches.
Nevertheless, image inpainting techniques might be exploited to alter and delete content for
malicious motives and can be used to generate the so-called forged image. Forgery aims at
duplicating or hiding some parts in such image. Indeed, given the recent technology progress, it
has become extremely easy to manipulate digital images and so it is difficult to guarantee their
authenticity. In many cases, it is impossible for a viewer to judge the authenticity of a given
image. Therefore, it is increasingly important to guarantee the integrity of the vast volumes of
multimedia data before using them in many situations such as courts of law.

Providing efficient methods to digital forgery detection was and still a fundamental goal
for researchers to establish the authenticity and origin of digital multimedia contents. Digital
authenticity detection (e.g. inpainting, cloning, resampling, etc.) is becoming one of the
attractive research areas in image (resp. video) processing [8] and this problem can be viewed
as the problem of constantly distinguishing between forged and original real images (resp.
videos). Figure 1 illustrate an example of copy-move forgery.

ACI
20,1/2

90



2. Related works and motivations
Basically, there are two major approaches for protecting digital multimedia data against
tampering: active [10] and passive [11] approaches. For the case of active one, tampered
region can be extracted using watermarking techniques while passive techniques have been
developed in response to watermarking limitations.

In the recent past, some efforts have been devoted to solve this hot topic. Many of them
are block-basedmethods that involve a feature extraction step to each block. Some effective
block-based methods were developed to detect forgeries using robust features such as
DCT, DWT, SVD (singular value decomposition), and PCA (Principal Component Analysis)
[12–15,11]. For instance, DWT and SVD are combined and matched to detect duplicate
regions in [15]. DCT is also used to extract features and to improve the detection precision in
[13]. Zernike moments, which are invariant to rotations, are also applied in [16] to judge
tampering. Other techniques exploit inconsistencies or unnatural high coherence observed
in an image to detect duplicated elements. For instance in [17] authors proposed a method
based on inspecting lighting conditions. In another effort [14], authors used the correlation
characteristics between segments to detect duplicated regions. In [18] pattern noise is
computed and then used to compare between the studied image and the reference pattern.
Other works proposed to handle local transformations using keypoint-based methods like
the scale-invariant feature transform (SIFT) features and descriptor algorithms, which are
broadly applied in computer vision applications [19–21]. These algorithms are based on
local features extraction and cost in general less time. In [19] authors proposed to apply the
scale and rotation-invariant SIFT in order to extract and to match similar local features.
Then, an agglomerative hierarchical clustering is performed to identifymultiple cloned and
forged regions. SIFT is also applied in [20] to determine keypoints and their visual features
which are used in conjunction with RANSAC algorithm. An iterative detection algorithm
was developed in [22] to localize duplicated regions based on both a keypoint-based and
block-based methods so as to enhance the expected results. Furthermore, false matched
regions are removed through a novel designed filter algorithm. So as to improve the copy-
move forgery detection accuracy, some recent works proposed to take into account a
segmentation step [23,24]. Indeed, in [23] the computational complexity is minimized by
segmenting a suspicious image into independent patches. More specifically, SIFT and
SURF are employed to identify salient points and the expectation–maximization (EM)
algorithm is used to filter false patches and to increase the detection accuracy. In [9],
interest points are extracted and clustered on the basis of some geometric constraints.
Then, a multi-scale analysis process is utilized to examine the generated clusters and to
detect duplicated regions. Even though most of the proposed methods are considered
robust against blur and noise and can help in detecting forgery, however, most of them are
computationally expensive, fail to handle images containing smooth and low contrast

Figure 1.
Inpainting copy-move
forgery example (here
the bird is fully hidden).
Original image in the
left and copy-move
forgery in the right

side [9].
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regions, and may not be able to detect some complex attacks (i.e inpainting forgery).
Moreover, it is not expected to think about the possibility to exploit these methods and
extend them for the case of video forgery detection.

Artificial intelligence and machine learning are a growing areas of research that offer
potential benefits to solve difficult problems like forgery. Statistical approaches provide a
formal way for imagemodelling and classification [25,26]. In particular, finite mixture models
have attracted great interest among other approaches [25,27,28] [29]. Recently, some
developedmixtureswere applied successfully in the case of forgery detection problem [21,30].
In this context, we address the problem of image forgery detection by investigating recent
developed mixture model named finite bounded generalized Gaussian mixtures (BGGMM)
[31,32]. The consideration of BGGMM is encouraged by the fascinating results exposed
recently and show this model as more effective for data classification and modeling than the
conventional Gaussian mixtures [31,26]. Indeed, BGGMM has the advantage to fit data with
different shapes defined within a bounded support and to maintain the goodness of fit.
However, a crucial problem when we consider deterministic algorithms (such as the EM
algorithm) to learning generative mixture models (in particular BGGMM) is their
convergence to saddle points and their dependency on the initialization step [31,26,25].

3. A hybrid of bounded generalized gaussian mixture model and SVM
To cope with generative models limitations, one can think in using discriminative models
instead of generative ones. Indeed, it has been shown in many contexts that
discriminative classifiers (eg. SVM) are generally higher than generative models [33–
35]. However, traditional discriminative classifiers fail also to reach high performances
for all possible applications. In particular, the main problem with standard SVM kernels
is that they are unable to consider the nature of training data and therefore they can not
handle proportional data properly like the problem of image forgery. For all these
reasons, we propose in this manuscript to develop a more powerful generative-
discriminative approach based new implemented kernels. The key idea is to combine the
strengths of both generative and discriminative models into one same hybrid framework.
In particular, we intend to develop more appropriate and flexible SVM kernels from the
generative bounded generalized Gaussian mixture model (BGGMM) for tampering
detection. The ultimate goal is to improve the SVM capability in data forgery detection
which is actually a challenging task and to achieve better performance when new hybrid
learning approach is developed instead to motivate more this particular choice. To the
best of our knowledge the generating of new SVM kernels from bounded generalized
Gaussian mixtures and its application to the problem of image forgery detection have
never been tackled before.

In the past, some standards SVM kernels (like linear kernel, RBF, polynomial) have been
proposed [36] and it should be noted that these kernels pay no attention to the intrinsic
structure of input data. As indicated in [37], if the selected kernel is constructed directly from
data then this process yields to have more effective classification performances. Among the
most valuable probabilistic kernels in this context we can cite especially the Information-
based kernel (known also as Kulback-Leibler kernel), the Fisher kernel, and the
Bhattacharyya-based kernel [37–39]. In the following sections we will expose our
developed new probabilistic SVM kernels from bounded generalized Gaussian mixture
model to deal with the forgery detection challenge.

3.1 Bounded generalized Gaussian mixture model
Although conventional Gaussian and generalized Gaussian mixture models have achieved
acceptable results previously for data modelling and classification [40,41], nevertheless, their
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distributions are not bounded which limit their performances. Then again, a lot of real-life
applications and sources have a bounded support. Consequently, considering this constraint
when proceeding with mixture models will definitely enhance classification results and also
the detection precision. In this work, we propose to investigate a flexible mixture model
known as bounded generalized Gaussian models for forgery detection. This model has been
proposed earlier in [31] for image segmentation. In this paper we propose to investigate the
BGGMM in conjunction with discriminative approaches. The bounded generalized Gaussian
distribution (BGGD) is considered among the recent successful finite mixture models for
machine learning and pattern recognition applications [31,26] and it is proposed to generalize
several other statistical distributions as such as the Gaussian, Uniform, and Laplacian
distributions. It has the advantage to better fit different non-Gaussian shapes.

Let x ¼ ðX!1; . . . ; X
!

N Þ be a set of N images. Each image X
!

i is represented by an
d-dimentional vector generated by a linear combination ofM bounded generalized Gaussian
distribution given as follows:

pðX!ijΘÞ ¼
XM
j¼1

pjψðX!ij μ!j; σ
!

j; λ
!

jÞ (1)

where pj is the mixing parameter that should satisfy for each component

jð0≤ pj ≤ 1;
PM

j¼1pj ¼ 1Þ and Θ ¼ ð μ!j; σ
!

j; λ
!

jÞ is the set of the parameters for the

component j represented by a BGGD which is characterized by mean parameter
μ!j¼ ðμj1; . . . ; μjdÞ, covariance matrix σ!j ¼ ðσj1; . . . ; σjdÞ, and shaper parameter

λ
!

j ¼ ðλj1; . . . ; λjdÞ.

ψðX!ij μ!j; σ
!

j; λ
!

jÞ ¼
pðX!ijμ→ j; σ

→

j; λ
→

jÞHðX!ijΩjÞR
δj
pðX!ijμ→ j; σ

!
j; λ
!

jÞdx
; (2)

where pðX!ij μ!j; σ
!

j; λ
!

jÞ is the probability density function of the generalized Gaussian
mixture model (GGMM) given by:

pðX!ij μ!j; σ
!

j; λ
!

jÞ ¼
Yd
k¼1

FðλjkÞexp
�
−GðλjkÞ

����Xik � μjk
σjk

����λjk� (3)

where

FðλjkÞ ¼
λjk

�
Γð3=λjkÞ
Γð1=λjkÞ

�1=2

2σjkΓð1=λjkÞ ;GðλjkÞ ¼
�
Γð3=λjkÞ
Γð1=λjkÞ

�λjk=2
;Γð:Þ is the gamma function, and HðX!ijΩjÞ is

the indicator function, δ is a bounded support region defined for each region Ωj).

HðX!ijΩjÞ ¼
�
1 If X

!
i ∈ δj

0 Otherwise
(4)

3.2 Generative model estimation
Given the set of images x, the complete log-likelihood corresponding to M mixture of BGG
distributions is introduced as follows:

Inpainting
forgery

detection

93



LðxjΘÞ ¼
XN
i¼1

log
XM
j¼1

pjψðX!ij μ!j; σ
!

j; λ
!

jÞ (5)

The parameters of thismodel BGGMMare learned bymaximizing the log likelihood using the
expectation-maximization algorithm (Algo.1). During the expectation stage, the posterior
probability (known also as responsibility) is calculated as:

pðjjX!iÞ ¼
pjψðX!ij μ!j; σ

!
j; λ
!

jÞPM

m¼1pmψðX
!

ij μ!j; σ
!

j; λ
!

jÞ
(6)

Based on those calculated responsibility, the parameters of the mixture are determined in the
maximization step and are updated according to:

Θðtþ1Þ ¼ argmax
Θ

LðxjΘÞ (7)

when maximizing the above equation, we obtain:

� Mixing weight estimation:

p
ðtþ1Þ
j ¼ 1

N

XN
i¼1

pðjjX!iÞ (8)

� Mean estimation:

bμjk ¼ PN

i¼1pðjjX
!

iÞðjXik � μjkjλjk−2Xik þ TjkÞPN

i¼1pðjjX
!

iÞjXik � μjkjλjk−2
(9)

where:

Tjk ¼
PM

m¼1signðμjk � smjkÞjμjk � smjkjλjk−1HðsmjkjΩjÞPM

m¼1HðsmjkjΩjÞ
(10)

� Covariance matrix estimation:

bσjk ¼
"
λjkAðλjkÞ

PN

i¼1pðjjX
!

iÞjXik � μjkjλjkPN

i¼1pðjjX
!

iÞð1þ QjkÞ

#1=λjk

(11)

where

Qjk ¼
PM

m¼1ð�1þ λjkAðλjkÞjsmjk � μjkjλjkðσjkÞ−λjkÞHðsmjkjΩjÞPM

m¼1HðsmjkjΩjÞ
(12)

� Shape parameter estimation:

bλjk ¼ λjk �
(
v2log½pðX jΘÞ�

vλ2jk
þ γ

)−1

vlog½pðX jΘÞ�
vλjk

; (13)

where γ denotes a scaling factor. v
2 log½pðX jΘÞ�

vλ2
jk

and vlog½pðX jΘÞ�
vλjk

are detailed in [31].
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3.3 Deriving SVM kernels from BGGMM
A crucial step for image forgery detection is visual features extraction. In this work we
proceed with SURF (Speeded-Up Robust Features) descriptor [42] which is robust and
invariant to geometric transformations. The proposed methodology is as follow: first, visual
features are extracted using SURF detector. Each image is encoded as a vector of SURF
features and then modeled through the finite mixture models (BGGMM). Secondly, kernel
matrices are constructed on the basis of themixture models. The generated kernels are Fisher
information, Bhattacharyya kernels, and probabilistic-based distances between each of these
mixture models. The SVM-based classifiers are developed to find the optimal estimated
parameters. Thus, the main objective is to investigate the forgery detection results when
using different SVM kernels while the BGGMM represent the core of these kernels. A
flowchart summarizing and describing the proposed method is depicted in Figure 2. In the
next subsections, we presented all necessary details regarding the different developed
kernels.

3.3.1 Fisher kernels. The key intuition behind the Fisher kernel [37] is that it measures
the similarity of two distributions (mixtures). Moreover, similar distributions imply same
log-likelihood gradients in the mixture space. Thus, in order to construct Fisher kernel,
we need to calculate the log-likelihood gradient of every distribution or mixture. In our
case, we investigate the concept of the Fisher kernel for forgery detection since it is
considered as a generic bridge between discriminative methods and probabilistic
generative models and so it combines the benefits of both of them. In the following we
replace the standard SVM kernels by developing our proper Fisher kernel based on the
BGGMM.

Figure 2.
Flowchart of the

proposed method.
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kðX ;X 0 Þ ¼ Utr
X ðΘÞI−1ðΘÞUX

0 ðΘ0 Þ (14)

vL

vμjk
¼ BðλjkÞ λjk

σ
λjk
jk

XN
i¼1

ZijjXik � μ
λjk−2
jk (15)

�
Xik þ μjk �

Rj

jXik � μjkjλjk−2
�

where

Rj ¼
PM

m¼1signðμjk � smjÞjsmj � μjkjλjk−1HðsmjjΩjÞPM

m¼1HðsmjjΩjÞ
(16)

vL

vσjk

¼ σ−1
jk

XN
i¼1

Zij

h
−1þ BðλjkÞjXik � μjkjλjkλjkσλjk

jk � Gj

i
(17)

where

Gj ¼
PM

m¼1ð−1þ λjkBðλjkÞÞjsmj � μjkjλjkσ−λjk
jk HðsmjjΩjÞPM

m¼1HðsmjjΩjÞ
(18)

vL

vλjk
¼

XN
i¼1

Zij

"
f ðXikj μ!j; σ

!
j; λ
!

jÞÞ �
R
δj
ψðX!ij μ!j; σ

!
j; λ
!

jÞf ðXikj μ!j; σ
!

j; λ
!

jÞdxR
δj
ψðX!jj μ!j; σ

!
j; λ
!

jÞdx

#
(19)

where

f ðXikj μ!j; σ
!

j; λ
!

jÞ ¼
"
1

λjk
þ 3ψð1=λjkÞ � 3ψð3=λjkÞ

2λ2jk

#

� BðλjkÞ
����Xik � μjk

λjk

����λjk log����Xik � μjk
λjk

����� BðλjkÞ
(20)

vL

vpj
¼

XN
i¼1

�
pðjjX!iÞ

pj
� pð1jX!iÞ

p1

�
; j ¼ 2; . . . ;M (21)

3.3.2 Information divergence kernels. In order to combine the best of both discriminative
methods and generative mixture models, we derive here a kernel distance based on the
Kullback–Leibler (KL) divergence [38] between BGGMM mixtures. The key idea consists of
constructing kernels on the basis of information divergence which is an interesting family
allowing the measure of dissimilarity between different probability distributions and has
direct connections to many existing probabilistic kernels. In this work, we opt for a common
metric derived from the Kulback-Leibler (KL) divergence which is one of the essential
quantities in machine learning. Hence, the dissimilarity between two probability

distributions pðX!jΘ1Þ and qðX!
0

jΘ2Þ is given as:

kðpðX!jΘ1Þ; qðX!
0

jΘ2ÞÞ ¼ e−ADðpð X
!jΘ1Þ;qðX

!0

jΘ2ÞÞ (22)

where the factor A > 0 is used for numerical stability reason, and
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DðpðX!jΘ1Þ; qðX!
0

jΘ2ÞÞ ¼
Z
ω
pðX!jΘ1Þlog pðX!jΘ1Þ

qðX!
0
jΘ2Þ

þ qðX!
0

jΘ2Þlog qðX!
0

jΘ2Þ
pðX!

0
jΘ1Þ

(23)

Given that it is not possible to have a closed form equation for the KL divergence kernel,
therefore we opt for numerical approximation techniques such as the well-known Monte
Carlo method [43,44].

kðpðX!jΘ1Þ; qðX!
0

jΘ2ÞÞ≈ 1

L

XL

i¼1

log
pðX!ijΘ1Þ
qðX!

0

ijΘ2Þ
(24)

3.3.3 Bhattacharyya kernels. In this section, we opt for another distance called
“Bhattacharyya distance” [45], which allowing us the measure of the similarity between
two probability density functions such as BGGMM. Then, we name the derived kernel from
this distance as Bhattacharyya kernel. As it is impossible to estimate a closed form for the
Bhattacharyya kernel for the bounded mixture model BGGMM which is intractable,
therefore, we proceed like the case of Kullback-Leibler (KL) divergence by approximating a
Bhattacharyya kernel using Monte Carlo simulation method [43,44].

k1
2
ðX!1; X

!
2Þ ¼

Z 1

0

pðX!jΘ1Þ1=2qðX!jΘ2Þ1=2dX! (25)

k1
2
ðX!1; X

!
2Þ≈ β

N1

XN1

i¼1

p1=2ðX!ijΘ1Þ
Z1

p1=2ðX!ijΘ1Þ þ 1� β

N2

XN2

i¼1

q1=2ðX!ijΘ2Þ
Z2

q1=2ðX!ijΘ2Þ (26)

where β∈ ½0; 1� and the normalized factors Z1; Z2 are used for the densities p and q.

4. Experimental results
We have carried out experiments to assess the ability of the proposed approach in forgery
detection problem. We present here comparative study with other well known mixture
models which are broadly applied in the context of data classification. Please note that the
purpose here is to evaluate ourmodel against comparablemethods and not against all state of
the art algorithms which is out of the scope of this manuscript. The problem of image forgery
detection can be seen as the issue of identifying forged images from authentic ones. It can be
seen therefore as a classification problem.

4.1 Synthetic dataset
First of all, we begin by investigating the efficiency and the flexibility of our generative
BGGMM-based method. The evaluation is done by employing two synthetic datasets that we
have constructed. The first one represents a mixture of two bounded generalized Gaussian
distributions (BGGD) and each mixture contains 3000 vectors in each cluster. The second
dataset represents a mixture of three BGGD containing also 3000 vectors in each component.
Our main focus here is to study the BGGMM’s performance. Both real and estimated
parameters found using the BGGMM are given in Tables 1 and 2. Based on these tables, we
find that the estimated values for different parameters are very close to the real ones. For
example, the real and estimated values for the first cluster using the synthetic dataset1 are
ðμ ¼ 4; σ ¼ 0:1; λ ¼ 2Þ and ðbμ ¼ 3:9;bσ ¼ 0:08;bλ ¼ 2:004Þ respectively. This experiment
shows that the BGGMMcan accurately estimate themixture parameters and therefore can be
used with success for forgery detection problem.
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4.2 Forgery detection
We apply our approach to the challenging problem of image tampering detection. Our
experiments are based on two public data sets: MICC-F220 and MICC-F2000 [19].

The first dataset is the MICC-F220 which is composed by 220 images: 110 are forged
images and 110 originals. These images comprise for example plants, artifacts, and animals.
The second publicly available dataset named MICC-F2000 is composed of 2000 images of
which 700 are tampered and 1300 are authentic. In both datasets, the forged images are
obtained by inserting a rectangle patch (copy-paste operation) on the original authentic
images after performing some attacks like translation, scaling, and rotation. Sample images
from these data sets are given in Figure 3 and Figure 4. In our experiments, the computed
SVM kernels are trained using 10-fold cross-validation. Moreover, different number of
components are considered to identify the suitable value as illustrated in Figure 5.

Results and comparative study w.r.t other methods from the state of the art, which are
performed on the MICC-F220 dataset, can be viewed in Table 3. Quantitative results are
determined in term of accuracy, TPR (true positive rate) and FPR (false positive rate) measures
when applying different kernels generated from bounded generalized Gaussian mixture model.
The accuracymetric represents thepercentage of correctly classified images into normal or forged
classes compared to the total number of images in the dataset. The used metric is defined as:

TPR ¼ TP

TP þ FN

FPR ¼ FP

TN þ FP

Accuracy ¼ percentage of correctly classified images into normal or forged classes

total number of images

¼ TP þ TN

TP þ FP þ TN þ FN

(27)

where TP;FN ;FP;TN denote the number of true positives, false negatives, false positives and
true negatives, respectively. The objective of this study is to evaluate the implemented
probabilistic kernels and to compare them w.r.t some conventional generative mixture models.

Synthetic data μ σ λ

X1 1 0.3 2
X2 2 0.5 1
X3 0.5 1 1.5
Estimated data bμ bσ bλ
X1 1.5 0.19 2.001
X2 1.86 0.67 1.9
X3 1.1 1.02 1.99

Synthetic data μ σ λ

X1 4 0.1 2
X2 2 0.5 1
Estimated data bμ bσ bλ
X1 3.9 0.08 2.004
X2 1.92 0.44 1.92

Table 2.
Real and estimated
parameters of
synthetic dataset 2
using the BGGMM.

Table 1.
Real and estimated
parameters of
synthetic dataset 1
using the BGGMM.
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Accordingly, very encouraging results are obtained with our approach (see Table 3). Our
proposed approach requiresOðNKÞ operations for each iteration, where N represents the number
of input images and K is the number of components in the mixture. Moreover, the complexity of
training SVM is OðN 3Þ.

Figure 5.
Accuracy rates using
different number of

components for MICC-
F220 (Fisher kernel).

Figure 4.
Samples images from

MICC-F2000. First row
shows the original

authentic examples.
Second and third rows

show tampered
examples.

Figure 3.
Samples images from
MICC-F220. First row

shows the original
authentic examples.

Second and third rows
show tampered

examples.
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The first main deduction is that the proposed hybrid framework is able to increase the
performance for all possible SVM kernels as compared to the conventional generative models
such as Gaussian (GMM), generalized Gaussian (GGMM), and Bounded generalized Gaussian
(BGGMM) models. In spite of the success of generative models – especially mixture models –
for certain data classification problems, our current experiments have exposed the limits of
generative models and indicated that hybrid models have shown substantial improvement in
terms of detection accuracy. Therefore, there is an interest to develop hybrid approaches in
order to yield better results. The second conclusion here is that the Fisher kernel generated
from the bounded generalized Gaussianmixture model provides the best result. It bring great
enhancement w.r.t other kernels in terms of accuracy which is well explained by the fact that
this kernel is considered as an extension of the popular bag-of-visual-words (BOV) andmight
be calculated frommuch smaller vocabularies. It should also be noted that the best generative
model that offers the best results is the bounded generalized Gaussian mixture
model (BGGMM).

To further deepen our analysis of the developed approach, we apply it to another dataset:
MICC-F2000. As in the previous experiment, the forgery detection is performed by using
different methods as depicted in Table 4 and the best results are obtained for our developed
hybrid method named BGGMM-fisher kernel (i.e while BGGMM is deployed with fisher
kernel). It has the best accuracy with 81% than Gaussia, generalized Gaussian, Bounded
GGMM, BGGMM-kulback-leibler, and BGGMM-Bhattacharyya kernel. In general, the
proposed framework helps in obtaining good results for forgery detection as well illustrated
in Figure 6 which summarizes the comparative study between different methods for both
datasets MICC-F220 and MICC-F2000. According to this plot it is clear that proposed hybrid
framework outperforms the generative statistical models for both datasets. This can be
justified by the complexity of the datasets while the performance is improved using both
discriminative and generative approaches.

Models Accuracy ð%Þ
GMM 55.65
GGMM 55.80
BGGMM 56.00
BGGMM-kulback-leibler 57.30
BGGMM-Bhattacharyya kernel 67.86
BGGMM-fisher kernel 81.00

Models Accuracyð%Þ TPR ð%Þ FPR ð%Þ
Zernike [46] – 20.91 6.36
GoDeep [9] – 45.45 41.82
Zandi [22] – 78.18 48.18
Li [47] – 70.91 17.27
Cozzolino [48] – 84.55 17.27
GMM 50.45 54.55 40.00
GGMM 53.64 64.09 36.36
BGGMM 55.45 58.33 45.94
BGGMM-Bhattacharyya kernel 57.65 58.99 40.96
BGGMM-kulback-leibler 60.19 63.76 52.20
BGGMM-fisher kernel 80.90 85.42 17.85

Table 4.
Accuracies (%) for
forgery detection using
different approaches
for the dataset
MICC-F2000.

Table 3.
Accuracies (%) for
forgery detection using
different approaches
for the dataset
MICC-F220.
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5. Conclusion
We have developed a novel hybrid statistical approach based on both bounded generalized
Gaussian mixture model (BGGMM) and SVM kernels. Experiments have concerned a
challenging application called image forgery detection. Our choice for BGGMM is
motivated by the fact that bounded models have better modeling capabilities than
conventional unbounded Gaussian-based models, have the advantage to fit data with
different shapes and allowing to avoid under and over-fitting. Therefore, they are
considered more suitable for data classification and in particular forgery detection. On the
other hand, our solution involves the developing of new probabilistic support vector
machines (SVMs) kernels from the BGGMM. Thus the developed learning framework has
the advantage to combine properly the benefits of both discriminative and generative
models.

According to the experiments we can conclude that the developed probabilistic kernels are
helpful to achieve good performances and they outperform generative models (such as GMM,
GGMM and BGGMM) for the current problem. Future works could be devoted to extending
the current framework by integrating a feature selection mechanism able to take into account
a weight for each feature. The purpose is to improve more the results. Moreover, it is
interesting to investigate and to validate the proposed framework on other related
applications such asmultimedia segmentation and image databases summarization. Another
possible future direction is to evaluate other relevant local and may be global visual features
and descriptors to select the most suitable ones in order to improve the expected results.
Finally, we plan to consider other interesting bench marked datasets such as (FRITH) [49] to
evaluate both the current and further works.
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