
A hybrid approach for log
signature generation

Prabhat Pokharel
Department of Graduate Studies, NCIT, Lalitpur, Nepal, and

Roshan Pokhrel and Basanta Joshi
Department of Electronics and Computer Engineering, IoE, Lalitpur, Nepal

Abstract
Analysis of log message is very important for the identification of a suspicious system and network activity.
This analysis requires the correct extraction of variable entities. The variable entities are extracted by
comparing the logsmessages against the log patterns. Each of these log patterns can be represented in the form
of a log signature. In this paper, we present a hybrid approach for log signature extraction. The approach
consists of twomodules. The first module identifies log patterns by generating log clusters. The secondmodule
uses Named Entity Recognition (NER) to extract signatures by using the extracted log clusters. Experiments
were performed on event logs from Windows Operating System, Exchange and Unix and validation of the
result was done by comparing the signatures and the variable entities against the standard log documentation.
The outcome of the experiments was that extracted signatures were ready to be used with a high degree of
accuracy.

Keywords Log message, Named entity recognition, Density-based spatial clustering, Similarity measure,

Support vector machine

Paper type Original Article

1. Introduction
A Log message is generated for an action performed on a computer system, device or an
application. A computer program generates a log message by printing the message with an
applicable log level. The log level defines the severity of the log message. This message is
forwarded to the logging unit of the respective system, device or application. A Syslog server
or an agent forwards the log message to a central log collection server. Log messages [1] are
used for various day to day activities such as system and network troubleshooting,
performance optimization, auditing actions of users and other objects, and to perform
advanced analytics for issues in security, behavior analysis, incident management, operation,
and regulatory compliance. Initial processing of logmessages is required before the actual log
analysis. This initial processing requires classification and parsing of log messages in the
form of key-value pairs.

ACI
19,1/2

108

© Prabhat Pokharel, Roshan Pokhrel and Basanta Joshi. Published in Applied Computing and
Informatics. Published by Emerald Publishing Limited. This article is published under the Creative
Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create
derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this license may be seen at http://
creativecommons.org/licences/by/4.0/legalcode

Publishers note: The publisher wishes to inform readers that the article “A hybrid approach for log
signature generation” was originally published by the previous publisher of Applied Computing and
Informatics and the pagination of this article has been subsequently changed. There has been no change
to the content of the article. This change was necessary for the journal to transition from the previous
publisher to the new one. The publisher sincerely apologises for any inconvenience caused. To access
and cite this article, please use Pokharel, P., Pokhrel, R., Joshi, B. (2019), “A hybrid approach for log
signature generation”, Applied Computing and Informatics. Vol. ahead-of-print No. ahead-of-print,
https://10.1016/j.aci.2019.05.002. The original publication date for this paper was 14/05/2019.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2210-8327.htm

Received 11 February 2019
Revised 3 May 2019
Accepted 7 May 2019

Applied Computing and
Informatics
Vol. 19 No. 1/2, 2023
pp. 108-121
Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964
DOI 10.1016/j.aci.2019.05.002

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://10.1016/j.aci.2019.05.002
https://doi.org/10.1016/j.aci.2019.05.002


Log management and SIEM [2] solutions are the most popular applications used for
advanced log analysis. A SIEM system is centrally located and ingests log messages from all
kinds of data sources. The ingested data is parsed, tagged with relevant information, stored
and indexed. The indexed data is used searching, filtering, aggregation, correlation, alerting,
reporting and also for advanced machine learning and behavior analytics. However, for all of
these tasks, the log data should first be correctly parsed and indexed. And, parsing of these
messages requires an understanding of the logging behavior of the respective system. The
logging behavior brings some challenges for log parsing. The challenges are as follows:

� Log data repositories store log data from many different data sources such as in case
of a data lake Figure 1. A data set practically contains log messages from many
different types of log sources with multiple log categories contained within each
source. Each log source has a different header and message part. The header part is
always the same within a data source and in some cases resemble between different
sources. The message part of each data source has multiple categories. So, if a log
source in an average has 50 categories and there are 10 data sources, then the total
number of categories is 500.

� Some of the log messages are generated very rarely. That is the probability of
generation of such a log message is very low. Some example of such messages are
changes to policy or even clearing of audit records. The occurrences of the events also
depend on the type of system. For example, log message for system reboot or
shutdown is not normal in critical servers.

� The log messages do not have uniformity in the available entity types. For example,
one log message may contain a file name and not an IP address while the other may
contain the IP address but not the file name.

Figure 1.
Log collection with and

without data lakes.

Approach for
log signature

generation

109



� There is no standard taxonomy for the definition of a named entity as there is no
uniform protocol for defining the names of the available entities. For example, an IP
address can have different names in different log sources.

� There is no uniform structure for defining the format of a log message and developers
can generate logs as per their choice. Log messages may be composed of the regular
sequence of words or also may be generated in formats like JSON, XML, CSV, etc.

To be able to solve the problem of log parsing through log signature generation we need to
solve the above-mentioned challenges by understanding and utilizing the two important
properties in messages. The first property is that every log message can be mapped to a log
category. This mapping is specifically applicable for log messages belonging to the same
source. The log categories are the result of the templates used for generating log messages.
The second property is that each log message contains information about the entities
involved for a given action performed. And, the values for these entities vary between log
messages within the same category. The sequence of strings besides the variables are fixed
within a category and can be termed as constants.

Parsing of log messages is typically done using signatures based on regular expressions.
James E. Prewett [3] has explained the use of the regular expression to analyze log messages.
Risto Vaarandi et al. have used LogCluster [4] tool to propose a framework for identification
of anomalous log messages. Similarly, Risto Vaarandi has carried a number of works on
clustering and pattern identification in log messages. A number of works have been
conducted to compare the performance of LogCluster [5,6] with other publicly available tools.
LogCluster is based on frequent itemsetmining alongwith and SLCT [7] whichwas one of the
first tools for log clustering and signature generation. His approaches rely on the fact that
within a cluster the non-varying parts is constant whereas the varying parts represent the
variable entities. These variable entities are replaced bywildcards to construct log templates.
Thresholds should be defined for the frequency of the variable entities falling in each cluster.
Improperly set thresholds can give undesired clusters and thus wrong templates. The major
limitation can be seenwhen the varying (variable) entities do not change and remain constant
for the samples within the pattern. In such a case, the varying entities cannot be identified.
Thus, the formation of a signature is not possible. In recent years some other methods of log
pattern identification have also been devised. Such a method for log template generation
based on Natural Language Processing was proposed by Satoru Kobayashi et al. [8]. The
method showed promising results for variable identification. However, the accuracy for log
template generation is fairly moderate, thus leaving sufficient space for improvement.
Similarly, some other works such as search based log clustering have been implemented by
Basanta Joshi et al. [9], where a log message is compared with a universal set of signatures.

In recent years’ new approaches on log parsing and template generation have been
conducted. Pinjia He et al. [10] have implemented an online log parsing tool using a tree with a
fixed depth. It consists of 5 different steps. The first step uses regular expressions to match
the required messages or sections of the log message. The second step counts the number of
tokens to create groups. This means log messages with the same length will fall into a group.
The third step creates new groups based on the tokens at the beginning of the log messages.
The fourth step calculates the similarity between the log group and the actual log message to
arrange similar log messages into a group. The fifth step updates the group if the log
messages match to the group else creates a new group. This approach has some practical
challenges such as log messages with the same length and same or similar string at the
beginning of the message can have a higher chance of generating a common parser. While at
other times log messages with different lengths will always generate different parsers, which
is not always correct. This can be observed particularly when the length of the variable is
subject to change. Similarly, for rare log messages where the system generates only one log

ACI
19,1/2

110



message for a given category, the variables can’t be identified. Salma Messaoudi et al. [11]
have implemented a search-based approach using a genetic algorithm to generate log
templates. Hamooni et al. [12] have implemented a tool named as LogMine based on
clustering to identify patterns from log messages. Wei Xu et al. [13] have conducted console
log mining using the source code analysis for problem identification.

Most of the earlier works in log signature generation are based on clustering and frequent
itemset mining. However, there have been works based on parsing tree or machine learning
as well. The existing research works have both advantages and limitations. Thus, the idea
behind our work is to reduce the limitations of the existing approaches, with a focus on the
practical challenges observed in log message parsing.

In this paper, we present a new concept on log message parsing. This concept combines
machine learningwith log clusteringwhich is one of the trustedmethods. Themost important
aspect of this paper is that it presents a concept to solve the practical challenges for log
signature generation and log parsing particularly in relation to logmanagement. Here, we use
log clustering for pattern identification and NER for variable recognition. In the remaining
section of the paper, we detail the examples of motivation and implementation details of the
hybrid approach. Furthermore, the remaining sections outline the experiments performed,
conclusions around the results obtained and areas for future work.

2. Materials and methods
2.1 Motivation
Log management systems collect log data from many different sources and each of these
sources contain multiple log categories. A log category contains similar log messages which
can directly be mapped to a log signature. We adopt clustering to identify a log category and
group the log messages together. A correctly identified log message and falling inside a log
category can be used as a seed for signature generation. A log category is composed of a
defined language pattern. However, this language pattern may not resemble the natural
language. For example, “Connection allowed from Chost/IPD” and “Connection denied to Chost/
IPD”. These examples show that entity names may occur after the words to or from. Similar
kinds of rules are observed in other logmessages. Thus, these rules can be used to identify the
constant parts and the variable parts in the log messages. A signature will represent the
constants as in the original strings and variables by a fixed pattern. Here, Figure 2 shows a
regular log pattern. Most of the log signature generation techniques are based on the concept
that within a pattern the varying strings are the entities and the remaining strings are the
constants. However, this may not always be the case. There are some limitations to the
assumptions made by most of the existing approaches. These are:

� Variable entities do not change within a given dataset. In the example to the right in
Figure 3 connection requests end up on the same destination IP address or destination
host. In this case, all the destination IP addresses or destination hosts will have the
same value and thus interpreted as a constant.

� If the data set contains some rare log samples, with one log message per category, the
constant tokens between different categories may be interpreted as variables. In the
example to the left in Figure 3 we see that failed and successful are represented as
variables though they are actually the constants.

� In approaches such as parsing tree, it is assumed that log messages with different
lengths can fall into different categories and thus generate different signatures.
However, this cannot always be correct. The absence of a variable entity and change in
number tokens used for a variable entity is widely observed behavior.

Approach for
log signature

generation

111



� It is also observed that certain sequences in the log message are considered more
significant in determining a category which again is not correct as most of the log
message can have the same or similar header information. In the case of parsing tree
sequence at the beginning of the log message is considered for identifying a category.
This can cause the algorithm to fail in many cases.

Figure 2.
Regular log pattern.

Figure 3.
Log patterns with
exceptions.

ACI
19,1/2

112



To solve these limitations, we adapt to use log clustering followed by NER. Clustering is used
to identify log patterns. While NER is used to identify the constant terms and variable terms.

2.2 Related algorithms
Clustering is an unsupervised machine learning approach. It is used to create various sub-
groups from a group of data points. The data points in a sub-group are such that they are
more similar to the other data points within the same sub-group compared to the other sub-
groups. Clustering is very efficient for identifying unique log patterns from a given collection
of log messages. Our approach uses Density-Based Spatial Clustering (DBSCAN) for the
clustering problem. This is because it is able to solve the following problems:

� Outlier samples should be considered for signature extraction. Outlier samples are the
samples, which do not fall within the defined similarity criteria. Every batch of data set
can have some set of log samples as outliers. If these outlier samples are included in the
classifier model, thus creating an under-fitting model.

� As it is practically a difficult problem to know in advance the number of log categories
in a batch of log samples. Thus, wewant the approach to be able to identify the number
of clusters on its own.

We use the cosine similarity measure as a measure of similarity. This is because with this the
accuracy of a cluster can be determined by the frequency of the words. Similarly, samples
with the same length can fall within multiple clusters. Thus, cosine similarity [14] is a good fit
for measuring the similarity between log samples.

NER is used in areas such as classification of entities in documents, news, and web,
recommendation systems, search optimization and so on. These systems deal with standard
natural language structure. Log messages do not precisely follow standard natural language
constructs. Thus, the Parts of Speech (POS) tagging for log messages is not completely
aligned to the definition and context given by the natural language. This creates a need to
adjust the POS tagging as per the structure of the log messages. Our approach uses Support
Vector Machine (SVM) [15] to build the classifier model for extracting named entities. SVM is
a supervised machine learning approach to classify a given set of data points. It identifies a
hyperplane that classifies the data points with a maximum margin. If f(x) is a classification
function. Such that30 {true, false} for training data points3 * {true, false}. f(x)5 true if
the test data point falls in the desired class. And f(x)5 false if the test data point falls outside
the desired class. The choice SVM in our approach is due to the fact that we want higher
performance and accuracy with limited labeled samples. Also making the use of preceding
and succeeding tokens as features and not just the actual token.

2.3 Proposed approach
Wehave devised a hybrid approach, which uses clustering for log pattern identification and a
classifier model for NER. The approach can be broken down into two modules. The first
module identifies patterns by creating clusters from a batch of log messages. A pattern
contains log messages falling within a category or an event type. The second module
consumes the log patterns to build the classifier model and then extract the named entities. A
signature is generated as an output of the second module, which consists of static and
variable sections. The signature as a whole represents a log pattern with both variables and
constants. Here in Figure 4, we see the block diagram for the overall signature generation
approach. The input consists of a batch of n log messages. The log batch may contain log
messages from one or more sources. The log messages are broken down into bigram tokens
and then sent for a similarity check with the seed. Log messages falling under a defined
threshold are grouped together as a cluster or a pattern. The logs are further used to prepare a

Approach for
log signature

generation

113



classifier and identify the named entities. Important parameters used in the proposed
approach are listed in Table 1.

2.3.1 Pattern identification. The pattern identification module uses clustering to identify
log patterns. Every log message is broken down into bigram tokens and compared with a
seed log message. The log messages are appended to a cluster if the angle of separation
between them is within a specified threshold limit. When there are more than two log
messages within a cluster (clst), the seed is replaced by the new log message having the
smallest angle of separation. The threshold angle is adjusted to minimize the cluster pattern
error. This is ensured by validating that the outlier does not belong to the set of clustered
patterns and no two outliers are similar. Thus, only a log message which does not fall into an

Parameter Description

N (Number of log samples) Represented by f1; 2 . . .Ng. If n is an instance n∈ f1; 2 . . .Ng
M (Number of log categories) Represented by f1; 2 . . .Mg. If m is an instance m∈ f1; 2 . . .Mg
P (Number of log patterns) Represented by f1; 2 . . .Pg. If p is an instance p∈ f1; 2 . . .Pg
O (Number of outlier logs) Represented by f1; 2 . . .Og. If o is an instance o∈ f1; 2 . . .Og
T (Threshold) Optimal threshold for an extracted pattern in the range of 0 to 1
CPE (Cluster pattern error) Ratio of number of clusters to number of patterns. CPE ¼ P=M
AA (Adjusted accuracy) Accuracy obtained by removing outlier categories from the data set.

AA ¼ P=ðM−OÞ
SA (Signature accuracy) Accuracy of the signatures generated by using the outlier categories.

SA ¼ ðPþ OÞ=M

Figure 4.
Signature generation
approach.

Table 1.
Key parameters used in
the proposed approach.

ACI
19,1/2

114



existing cluster is considered as an outlier. As each of these outliers is represented as an
independent pattern and thus these are passed to the second module to extract the named
entities.

2.3.2 Pattern identification algorithm.

� For a given data set that contains Nmessages andM categories where eachmessage is
represented by n and each category by m

� Each n log message is represented as a text vector for given word bigrams

� n∈ f1; 2 . . .Ng and m∈ f1; 2 . . .Mg
� This generates P patterns and O outliers

� p∈ f1; 2 . . .Pg and o∈ f1; 2 . . .Og
� For each p there are more than one log messages with one seed message.

� For each o there is one and only one log message which can act as a seed.

� If N is the input and P, O are outputs

� Define a threshold T for which the log vectors fall into a category if their angle of
separation is less than the angle of threshold (0<5T<51)

� Such that M≈P; P∩O ¼ ∅; Pþ O ¼ M and o∉P; o∈M

2.3.3 Entity recognition and signature generation. The entity recognition module ingests the
log patterns in the form of log clusters. The log messages in the clusters are first used to train
the classifier model. The entity recognition module consists of the following steps:

2.3.3.1 Labeled data preparation. The varying (variable) entities are extracted from each
cluster by using a proven approach. During the process, we used a standard application [16]
for parsing log messages. Furthermore, the results from the application are validated by
following the standard log documentation. This data is used for training the model.

2.3.3.2 Preprocessing. Preprocessing does the cleaning of the data samples by removing
unwanted characters and tokens. Tokens are created by splitting the log message on
whitespace characters. Non-alphanumeric characters from the tokens are removed. The
patterns for DateTime format, IP address, and, MAC address is replaced with definitions for
each of these types.

2.3.3.3 Feature extraction. Feature extraction is done on the preprocessed tokens. This is
done by selecting trigrams in order to preserve the context of a given log sequence. The
selection of features considers the use of preceding and succeeding tokens from the selected
token. The preceding value is represented by (n� 1), the actual value by n and the succeeding
value by (n þ 1). POS tagging for each identified token is done before using it as a feature.
Lemmatization process is not required as we want our model to preserve the tokens as they
are and change in the tokens is sensitive for the final outcome. Following features are used for
model preparation:

� POS tag of ðn− 1Þth token
� POS tag of ðnþ 1Þth token
� POS tag for nth token

� Value of ðn− 1Þth token
� Value of ðnþ 1Þth token
� The shape of nth token

Approach for
log signature

generation

115



2.3.3.4 Classifiermodel formation. Classifiermodel based on the SVM is constructed using the
extracted features.

2.3.3.5 Signature generation. The seed log message for each pattern or an outlier is
compared against the model to generate the signature. As the variable entities are extracted,
these entities are replaced by variable tags.

2.3.4 Signature generation algorithm.

� Inputs: A seed or an outlier log message An empty signature list

� From the logmessage remove any unwanted characters and replace standard patterns
with their definitions

� Split the log message into a list of tokens

� For each token in the list

� Check for a variable entity

� If True: Replace the token with a variable tag and append to the signature list

� If False: Append the token to the signature list

� Output: Updated signature list

3. Experiment
3.1 Dataset
Two sets of data are used during the experiment. The first set is synthetically prepared and
only used during the research phase for finalizing the algorithm. The second set consists of
log dumps from 6 different instances of the Windows Operating System as shown in
Table 2. The dumps contain log samples consisting of categories such as successful login,
failed login, logoff, successful authentication, failed authentication, account created,
account deleted and so on. Sample number 5 contains log messages from Windows and
Exchange while the sample number 6 contains log messages from Unix Server as well. The
reason for combining three data sources is for evaluating the dependency of the accuracy
on the header section or the beginning tokens. Log messages in Windows and Exchange
have the same beginning tokens while the header in Unix is different from that ofWindows
and Exchange. So, with this, we are able to validate our model for two special cases. The
first is that a log collection server receives more than just one data source. And the second is
that even if the data sources are different, their headers or beginning tokens are similar. We
used application [16] with log parsing capability to label the data with identified variable
entities. Standard event log documentation [17] is referred for re-verifying the correctness
of the results returned by the application. This gives the number of log categories and log
messages belonging to each category. The labeled data is used for pattern identification

Sample Categories Message Count Average Tokens Data Source

1 104 10,400 70 Windows
2 98 11,020 69 Windows
3 67 4599 64 Windows
4 46 9021 66 Windows
5 109 121,503 69 Windows, Exchange
6 121 145,090 68 Windows, Exchange and Unix

Table 2.
Data samples.

ACI
19,1/2

116



and validation against the number of available categories and also for training and testing
of extracted named entities.

3.2 Results and discussion
Independent evaluations were done on the results for the accuracy of the signatures and the
accuracy of the variable entities. Validation of the signatures was done by comparing with
the available categories in the training data set as shown in Figure 5. While the validation of
the variable entities was done by testing the classifier models by performing 10-fold cross-
validation on the training datasets. The performance for the correctness of variable entities
was measured in terms of accuracy, precision and f measure. The correctness of the
signatures was evaluated by calculating the cluster pattern error and signature accuracy.
The cluster pattern error is the ratio between the expected number of patterns and extracted
patterns.While adjusted accuracy is the accuracy obtained by removing the outlier messages
from each sample. The outliers are the single message containing patterns as a result of rare
log samples in the data set. Finally, we calculate the signature accuracy at the end of the
signature generation process, which considers signatures generated from both the clustered
patterns and the outliers.

3.2.1 Signature accuracy. We represent the accuracy of generated patterns and the
signature in three different ways, which helps us to highlight the advantage of the hybrid
approach. The cluster pattern error is the ratio of the number of patterns received after the
clustering to the available number categories. Adjusted accuracy is the accuracy obtained by
removing the single log instances from the given dataset. Signature accuracy is the final
accuracy of the signature generation process. It is the ratio between the extracted signatures
and the available number of log categories. For the six different samples, the maximum
observed error for pattern identification in the clustering module is 26.44% as shown in
Table 3. There is not much change in cluster pattern error as the number of log samples is
changed. However, comparing the results from all of the six samples, it is observed that the
cluster pattern error increases as the number of log categories are increased. The first sample
classifies 104 log categories into 80 patterns leaving behind 5 unclassified samples as outliers.
Whereas the sixth sample has nine outliers as the output of the first module. Removing the
outliers, the cluster pattern error for all of the samples is reduced and thus adjusting the
signature accuracy. This shows that the cluster pattern error is high on samples with a higher
number of outliers. Thus, we observe the least adjustment for samples with fewer outliers.
The overall signature accuracy for all of the six samples is above 80% and the maximum
observed value is 81.73%.

0

20

40

60

80

100

120

140

1 2 3 4 5 6

Categories

Signatures

Figure 5.
Signatures extracted

by log categories.

Approach for
log signature

generation

117



3.2.2 Variable accuracy. The accuracy of variable entities shows how correctly the
variables are represented in the signatures. We calculate accuracy, precision and f measure
as the parameters for measuring the performance. We observe low accuracy when the
number of log samples is low. This is because of the improperly created models due to
scarce data points. However, once the number of samples crosses a particular limit, increase
in accuracy is seen. As in Table 4, all of the four samples exhibited accuracies above 99%.
Higher accuracy is observed in sample 2 with fewer categories but with a higher number of
log samples compared to sample 1. Similarly, sample 3 and sample 4 with fewer categories
have even higher accuracies. While sample 5 and 6 both exhibit higher accuracies even if
the number of log categories is higher it is because both of these samples have maximum
data points required for model formation. However, for sample 6 we observe a slight
decrease in accuracy due to the variation in language constructs between the logs in
Windows and Unix Server. Figure 6 shows plots for accuracy, precision and f measure for
sample 1,3, 5 and 6 respectively. The performance measures in all of the four plots show
similar characteristics. What we observe is that the accuracy has a gradual rise to reach
towards the saturation point. However, the precision and the f measure exhibit a relatively
sharp change in slope.

3.2.3 Comparison with other approaches. We conducted experiments using LogCluster
and Drain and compared the results with our approach performed on data sample 5 and 6.
The obtained results are shown in Table 5. An accuracy of 67% was observed with
LogCluster while Drain showed an accuracy of 79% on sample 5. The accuracy decreased to
61% and 73% respectively for LogCluster and Drain respectively for experiments on sample
6. The significant decrease in accuracy with Drain was observed on data sample 6. One main
reason for it was that the log samples belonging to different categories had the same number
of tokens with similarity at the beginning. On the other hand, in the case of LogCluster, the
rare samples and frequent behavior of the variable entities was the main reason for the
reduction in accuracy.

Sample Categories Patterns

Cluster
Pattern
Error
(%)

Outlier
Categories

Adjusted
Accuracy

(%)

Signature
Accuracy

(%)
Precision

(%)

F
Measure
(%)

1 104 80 23.08 5 80.80 81.73 88.23 91.45
2 98 76 22.45 4 80.85 81.63 87.50 90.90
3 67 52 22.39 2 80.00 80.59 88.88 91.42
4 46 36 21.74 1 80.80 80.04 89.18 91.65
5 109 82 24.77 7 80.39 81.65 89.88 91.42
6 121 89 26.44 8 78.76 80.16 87.62 90.41

Sample Accuracy (Max %) Precision (Max %) F Measure (Max %)

1 99.19 87.56 90.27
2 99.24 88.07 91.10
3 99.48 89.15 96.23
4 99.67 90.17 96.13
5 99.69 90.70 92.10
6 99.57 90.19 92.50

Table 3.
Signature accuracy by
data samples.

Table 4.
Variable performance
measures by data
samples.

ACI
19,1/2

118



Figure 6.
Performance measures

for variable entities.

Approach for
log signature

generation

119



4. Conclusion and future work
We devised a hybrid approach for signature generation from log messages. We performed
experiments on log data from Windows, Exchange and Unix systems to verify that the
concept of the hybrid approach can be very effectively used to generate signatures. Our
approach uses similarity-based log clustering for log pattern identification and then
generates signatures by recognizing variable entities using the SVM based classifier model.
As signatures are generated per log cluster, each of these signatures represents a unique log
pattern, which in turn maps to a log category. At times there are single log instances for
certain patterns, these instances are not grouped into clusters but listed as outliers. However,
both clusters and outliers serve for the actual variable extraction and signature generation. In
certain cases, a single signature is generated for two or more categories if the pattern for two
or more categories is identical. The research work has a number of areas for improvement.
One area of improvement is on signature accuracy. Similarly, our approach uses data sets in
batches. This can also be extended towork on streaming datasets. Another important area for
future work could be to try new algorithms both for log clustering and NER. Similarly, the
current scope of the research focuses on the evaluation of the concept of the hybrid approach
with experiments conducted on three different data sources. This can be extended in the
future by performing experiments on a wide number of data sources.

References

[1] K. Kent, M. Souppaya, Guide to Computer Security Log Management, NIST, Gaithersburg, 2006.

[2] R.D. Miller, S. Harris, A. Harper, S. VanDyke, C. Blask, Security Information and Event
Management (SIEM) Implementation, McGraw Hill Professional, New York City, 2011.

[3] E.J. Prewett, Analyzing cluster log files using Logsurfer, Citeseerx (2003) 1–11.

[4] R. Vaarandi, B. Blumbergs, M. Kont, An unsupervised framework for detecting anomalous
messages from syslog log files, IEEE Xplore (2018) 1–6.

[5] R. Vaarandi, M. Kont, M. Pihelgas, Event log analysis with the LogCluster tool, IEEE Xplore
(2016) 982–987.

[6] R. Vaarandi, C. Zhuge, Efficient Event Log Mining with LogClusterC, IEEE Xplore (2017)
261–266.

[7] R. Vaarandi, A data clustering algorithm for mining patterns from event logs, IEEE Xplore (2003)
119–126.

[8] S. Kobayashi, K. Fukuda, H. Esaki, Towards an NLP-based log template generation algorithm for
system log analysis, Assoc. Comput. Mach. (2014) 1–4.

[9] B. Joshi, U. Bista, M. Ghimire, Intelligent clustering scheme for log data streams, Comput.
Linguist. Intel. Text Process. (2014) 454–465.

Sample Algorithm Categories
Signature

Accuracy (%)

5 Hybrid 109 81.65
Drain 79
LogCluster 67

6 Hybrid 121 80.16
Drain 73
LogCluster 61

Table 5.
Comparison with other
approaches.

ACI
19,1/2

120



[10] P. He, J. Zhu, Z. Zheng, R. Lyu, M., Drain: an online log parsing approach with fixed depth Tree,
IEEE Xplore (2017) 33–40.

[11] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, R. Sasnauskas, A Search-based approach for
accurate identification of log message formats, Assoc. Comput. Mach. (2018) 167–177.

[12] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, A. Mueen, LogMine: fast pattern recognition
for log analytics, Assoc. Comput. Mach. (2016) 1573–1582.

[13] X. Wei, H. Ling, F. Armando, P. David, I.J. Michael, Detecting large-scale system problems by
mining console logs, Assoc. Comput. Mach. (2009) 117–132.

[14] S. Al-Anaz, H. AlMahmoud, I. Al-Turaiki, Finding similar documents using different clustering
techniques, Proc. Comput. Sci. (2016) 28–34.

[15] Z. Ju, J. Wang, F. Zhu, Named entity recognition from biomedical text using SVM, IEEE Xplore
(2011) 1–4.

[16] C. David, Getting Data, in: C. David (Ed.), Exploring Splunk, CITO Research, New York, 2012,
pp. 13–19.

[17] Microsoft. (n.d.). Advanced security audit policy settings. Retrieved from Advanced security audit
policy settings: https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/
advanced-security-audit-policy-settings.

Corresponding author
Prabhat Pokharel can be contact at: prabhat@ncit.edu.np

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Approach for
log signature

generation

121

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/advanced-security-audit-policy-settings
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/advanced-security-audit-policy-settings
mailto:prabhat@ncit.edu.np

	A hybrid approach for log signature generation
	Introduction
	Materials and methods
	Motivation
	Related algorithms
	Proposed approach
	Pattern identification
	Pattern identification algorithm
	Entity recognition and signature generation
	Labeled data preparation
	Preprocessing
	Feature extraction
	Classifier model formation
	Signature generation

	Signature generation algorithm


	Experiment
	Dataset
	Results and discussion
	Signature accuracy
	Variable accuracy
	Comparison with other approaches


	Conclusion and future work
	References


