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Abstract
Since the last few decades, Artificial Neural Networks have been the center of attraction of a large number of
researchers for solving diversified problem domains. Due to its distinguishing features such as generalization
ability, robustness and strong ability to tackle nonlinear problems, it appears to be more popular in financial
time series modeling and prediction. In this paper, a Pi-Sigma Neural Network is designed for foretelling the
future currency exchange rates in different prediction horizon. The unrevealed parameters of the network are
interpreted by a hybrid learning algorithm termed as Shuffled Differential Evolution (SDE). The main
motivation of this study is to integrate the partitioning and random shuffling scheme of Shuffled Frog Leaping
algorithm with evolutionary steps of a Differential Evolution technique to obtain an optimal solution with an
accelerated convergence rate. The efficiency of the proposed predictor model is actualized by predicting the
exchange rate price of a US dollar against Swiss France (CHF) and Japanese Yen (JPY) accumulated within the
same period of time.
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1. Introduction
Currency Exchange rate is a conversion factor that represents the currency quotation of one
nation with respect to another one. It is one of the leading factors that determine the relative
level of a country’s economic stability in the global monetary market. Any valuable
investment and trading decisions that are taken by the government or companies go through
the analysis of these dynamic exchange rate values. So accurate forecasting of foreign
exchange rates has a great importance on forecasting the behavior of an economy. The
complicated nonlinear structure and rapid variations of these time series data make it hard to
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forecast its future behavior. Still, the financial benefits fascinated by accurate prediction of
currency exchange rates have encouraged researchers for developing newer and advanced
tools and models.

Over the years, a quite significant exploration of time series models, computational
intelligence techniques and hybrid techniques are accomplished in the domain of exchange rate
prediction. Artificial Neural Network (ANN), being themainstreamof computational intelligent
techniques has gained more popularity in a large variety of modeling and forecasting
problems. The wider usage of ANN is due to its distinguishing features such as generalization
ability, robustness and strong ability to tackle nonlinear problems. In several studies, ANN has
clearly outperformed the time series models for daily, weekly or monthly exchange rate
predictions [1–3]. Previously proposed time series models are based on the assumption of
correlated and linear nature of input data, whereas real-life data are more dynamic and
nonlinear. So theymay fail to comeupwith accurate predictions. Ye et al., in [4] haveproposed a
dynamic backpropagation neural network model and an Auto Regressive Moving Average
(ARMA)model to forecast the RMBexchange rate. The results reveal the better performance of
ANN over ARMA for both the trend and deviation prediction. Pedram and Ebrahimi, in [5]
have compared the performance of an ANN with an Auto Regressive Integrated Moving
Average (ARIMA) model for a short-term forecast of daily USD to Rial exchange rate. The
results have clearly shown that the error statistics observed from ANN is nearly half of the
ARIMAmodel. In [6], Adebiyi et al. did a similar comparison and got better accuracywithANN
than the ARIMAmodel. The comparative study carried out by Kamruzzan& Sarker in [2] also
yields better performance of ANN over ARIMA for prediction of six currencies against the
Australian dollar. In last few decades, Radial Basis Function Neural Network (RBF) [7],
Functional Link Artificial Neural Network (FLANN) [8,9], Multi Layer Perception Network
(MLP) [10], Pi-Sigma Neural Network (PSNN) [11] are the different types of ANN, that have
been successfully tested for forecasting currency exchange rates. Still, identifying the
unknown weights of an ANN is appearing as a challenging issue for designing an efficient
predictor model. The traditional backpropagation algorithmwith a gradient descent method is
the commonly used learning technique for ANNs. But it suffers from the issues of imprecise
learning rate, local minimal and slow rate of convergence [12–14]. To avoid the common
drawbacks of back propagation algorithm and to increase the optimality of network
performance, several researchers have proposed meta-heuristic methods in the training phase
of the neural networks. To increase forecasting speed and accuracy, researchers have also tried
to combine and optimize different algorithms and build hybrid models.

In this study, the author has designed a PSNN based predictor model with a Shuffled
Differential Evolution (SDE) based network learning algorithm, to foretell the successive
currency exchange rate prices. The evolutionary steps of a Differential Evolution (DE)
technique is integrated with the partitioning and random shuffling scheme of Shuffled Frog
Leaping Algorithm (SFLA) in proposed SDE learning algorithm. Shuffled complex evolution
framework originally proposed by Duan et al. in [15,16] is a global-searching algorithm in
which the population is partitioned into different complexes and each complex evolves for a
specific number of iterations independently and then all are forced to shuffle. Mariani et al. in
[17] have proposed a Modified Shuffled Complex Evolution (MSCE) optimizer by combining
the DE with the original shuffled complex evolution for solving unconstrained optimization
problems. The authors have used the DE/rand/1 mutation strategy in the evolution of
subpopulations. They have suggested a dynamic adaptation for the mutation scale of DE
with a linear decrease of values from 0.7 to 0.3 and a random selection of crossover rate
between 0.2 and 0.8 during the optimization cycle, to improve the balance between the
exploration and exploitation in DE. Testing over six benchmark functions the proposed
algorithm is found to give better result compared to original shuffled complex evolution
algorithm. Again Reddy, & Vaisakh, in [18,19] have proposed a combination of the shuffled
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frog leaping algorithm and differential evolution for solving economic dispatch problem.
Instead of using DE/rand/1 mutation strategy they have used DE/best/2 mutation strategy in
the evolution of subpopulations. A fixed crossover rate and scaling factor are chosen through
simulation for solving the problem. Further Naeini et al., in [20] have modified the SDE
algorithm using three mutation rates in three attempts. Initially, a larger mutation rate is
applied to explore the search space with larger jump rates. Then in the second attempt, the
mutation rate is reduced to a quarter of first value to enhance the exploitation capability. If a
better offspring is not possible with the twomutation rates then in next attemptmutation rate
is set to half of the first attempt. Lastly, if none of these attempts produce a better offspring, a
new point is selected randomly. In contrast to the above three approaches, in this paper, the
authors have used the DE/Current to best/1 Mutation strategy in the evolution process of the
subpopulation. They have also provided an adaptation scheme for mutation scale and
crossover rate to keep a balance between exploration and exploitation. In the early stage of
iteration, the search space is needed to be explored more whereas in the convergence end it
requires less exploration. So the two controlling parameters of DE such asmutation scale and
crossover are linearly decreased from a suitable higher to lower value through the iterative
steps. The hybrid learning algorithm is suggested to achieve an optimal trained networkwith
a faster convergence speed and improved predictive ability. Themainmotivation of the study
is to explore the utility of PSNN trained using SDE for predicting currency exchange rates. A
comparative assessment of the network with other learning techniques such as DE, SFL and
Particle Swarm Optimization (PSO) algorithm is actualized by predicting the exchange rate
price of USD/CHF and USD/JPY in different prediction horizons.

The remaining part of the paper is organized as follows. Section 2 focuses on a survey of
neural networks and suggested meta-heuristic learning techniques for the neural network in
the domain of currency exchange rate prediction. Section 3 describes the details of PSNN-SDE
based prediction framework. Simulation study depicting the comparative assessment of
different predictor models is analyzed in Section 4, followed by the conclusion in Section 5.

2. Literature survey
In the former few decades, Artificial Neural Network (ANN) has opened up a new dimension
in developing andmodeling efficient prediction models for financial time series data. In [7] an
ensemble forecastingmodel is presented by combining amultistage RBFNwith a Conditional
Generalized Variance (CGV) minimization method for extracting relevant ensemble members
of the model. The ensemble forecasting model has shown better level and direction
measurements than four ensemble forecasting models and an RBF model. Majhi et al., in [8]
have presented a two-stage cascaded functional link neural network, which has shown better
monthly prediction results compared to the LMS and FLANN model. Further compared to
individual LMS and FLANN model, Jena et al., in [9] have shown acceptably improved
prediction results of a KGANN in monthly exchange rate prediction. Chen et al., in [21] have
shown better performance of a Generalized Regression Network (GRNN) compared to the
randomwalk,multivariate transfer function andMLP in predictingmonthly exchange prices.
In [22] Ni and Yin suggested a hybrid model by blending a Recurrent Self-Organizing Map
(RSOM) with support vector regression and genetic algorithm for foreign exchange rate
prediction. A hybrid Differential EMD based SVR Model has left behind traditional
MS-GARCH and Markov Switching Regression (MSR) in predicting nonlinear currency
exchange rates [23]. Rehman et al., in [24] suggested an ANN with Cartesian Genetic
Programming, by adopting best input features with network pattern for prediction of foreign
exchange rates

Identifying the unknown weights is one of the important issues in designing an efficient
ANN based predictor model. To increase the optimality of network performance, several
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researchers have proposed meta-heuristic methods such as Artificial Fish Swarm algorithm
[25], SFL [11,13,26,27], PSO [28], DE [29], Differential Harmony Search (DHS) [12,30] and so on
in training phase of the neural networks. Eusuff and Lansey, in [31] have proposed the SFL
algorithm induced by the activity of a group of frogs exploring for their food. Originally the
algorithm is applied for pipe network optimization problem and later for discrete optimization
problem in [32]. SFLA has successfully applied in several optimization problems such as
optimal generation expansion planning problem [33], channel equalization problem [26],
multi-depots vehicle routing problems [34,35], flop shop scheduling problem [36] and so on.
Similarly, differential evolution based on recombination, mutation, and selection as its key
operations has also appeared as one of the popular stochastic function optimizers. Though
quick convergence and smaller parameter space size are the benefits of DE, still it may suffer
from the problem of stagnation. Inspired by the arithmetic operators used in the evolutionary
step of DE and the partitioning and randomly shuffling scheme used in SFLA, in this study, a
novel Shuffled Differential Evolution (SDE) algorithm is proposed as a learning algorithm for
PSNN. The SDE algorithm is designed to further balance the exploitation and exploration
abilities of traditional DE algorithm. With the hybridized approach the population diversity
will be increased during the evolution process by providing a better information sharing
approach between different individuals [17–20,37].

3. Proposed hybrid predictor model using Pi Sigma Neural Network with
Shuffled Differential Evolution based learning algorithm (PSNN-SDE)
This section outlines the detailed architecture of PSNN; SDEbased learning approach and the
detailed steps of PSNN-SDE for future currency exchange rate prediction.

3.1 Pi-Sigma Neural Network
The structure of Pi-Sigma Neural Network (PSNN) is equivalent to a feedforward network
having 3 tiers: one specifying input layer with one node corresponding to each input variable.
The next level containing summation units represent the hidden layer and the last layer with
the product unit represents the output layer. PSNN has successfully applied in several other
domains [38–41]. Figure 1 depicts the structure of a PSNN. A fully connected PSNN
represents a weighted connection of lower level neurons with all upper-level neurons.
Summation unit with an activation function is used in the output layer to capture the
nonlinearity exist between input and output space. Achieving an accurate result with a
smaller number of processing units is one of the key features of PSNN. It also leads to reduced
learning time of the network. The number of processing neurons in the hidden layer specifies
the order of PSNN.

Any d dimensional input pattern IP5 [ip1, ip2 . . . ipd]
T when passed through p number of

summation units, produces a weighted output with a bias as follows:

OðhcÞ ¼ Bc þ
Xd
r¼1

wrcipr for c in 1; p½ � (1)

where hc represents the summation neuron of the hidden layer; wrc are the weights between
input and hidden nodes; ipr represents the input node. An output of the product unit z, with
fixed weight value 1 considered between hidden and output layer, is worked out as follows:

z ¼
Yp
c¼1

OðhcÞ¼
Yp
c¼1

Bc þ
Xd
r¼1

wrcipr

 !
for c in 1; p½ � (2)

Then the final output y is obtained by using the hyperbolic tangent (tanh ( )) as the activation
function S ( ) as follows:
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y ¼ SðzÞ ¼ S
Yp
c¼1

Bc þ
Xd
r¼1

wrcipr

 ! !
(3)

3.2 Learning algorithms for PSNN
Estimating the unseenweights byminimizing prediction error is one of the challenging issues
in the design of PSNN. Hence parameter estimation of PSNN can be cast as an optimization
problem with a suitable error metric as an objective function. In this application, minimizing
Root Mean Squared Error (RMSE) is set as an objective function, which is defined as follows:

EðxÞ ¼ RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

yk � bykð Þ2
vuut (4)

where

x is the parameter set including the unknown weights wrc used in the Eq. (3).

yk 5 actual price on the kth daybyk 5 predicted price on the kth day

N 5 number of data samples.

Inspired by the promising output of neural network with several meta-heuristic learning
algorithms, in this paper the author has analyzed the utility of a Shuffled Differential
Evolution (SDE) based learning algorithm in designing of PSNN. The desire is to integrate the
partitioning and random shuffling scheme of Shuffled frog leaping algorithm with
evolutionary steps of a Differential Evolution technique to obtain an optimal solution with
an accelerated convergence rate.

Figure 1.
Detailed Structure of
Pi-Sigma Neural
Network (PSNN).
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3.2.1 Differential Evolution. Differential Evolution (DE) is an evolutionary, stochastic,
population-based optimization algorithm introduced by Storn and Price in 1996. Figure 2
depicts the flow diagram of DE. In DE an optimal solution is explored from a randomly
generated starting population by means of three evolutionary operations such as mutation,
crossover and selection. For each generation, the individuals of the current population
become target vectors and their fitness function value is calculated using Eq. (4). Then the
mutation operation produces amutant vector mi for each individual target vector xi using the
following formula:

mij ¼ xr1 j þ F 3
�
xr2 j � xr3 j

�
where r1 ≠ r2 ≠ r3 ≠ i

(5)

where r1, r2, r3 are random and mutually exclusive integers.
The mutant vector along with the target vector is further passed through the crossover

operation to produce a trial vector as follows:

tij ¼ mij if rand ½0; 1�#cr or j ¼ jrand
else xij

(6)

Initialize controlling parameters of DE 

Randomly initialize population vector 

Calculate fitness value of each vector 

Mutation 

Crossover 

Selection 

Is termination 

condition 
satisfied? 

Save the vector with minimum fitness 

value as solution vector 

No 

Yes Figure 2.
Detailed steps of

Differential Evolution
Algorithm.
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The trial vector replaces the target vector if its fitness value is better than the target vector. So
it can be summarized that mutation enlarges the search space, Crossover recapitulates
previously successful individuals and selection encourages the survival of the fittest. The
mutation, crossover and selection operations are repeated until some termination condition is
reached.

3.2.2 Shuffled Frog Leaping. Shuffled Frog Leaping algorithm (SFLA) is a nature based
optimization method that emulates the memetic evolution of a team of frogs, exploring
locations with more amount of available food. In SFLA, a team of frogs represents a list of
possible solutions to the optimization problem. The team is further divided into a number of
parallel communities specified as memeplexes. Then the frog with best position xb, the frog
withworst position xwwithin eachmemeplex and the frog having global best position xgwith
respect to the entire population of frogs are identified. The worst frog’s location in a
memeplex is updated based on the location of a local best or a global best frog or randomly to
a position so that the frogs can forward towards an optimal position. The new location for the
worst frog is obtained by exchanging information in memeplex according to the following
equation:

xwðnewÞ ¼ xw þ si ¼ xw þ r1 3 ðxb � xwÞ
where smin#si#smax

(7)

si is the frog leaping step size of ith frog, r1 is a random number within a range [1,1]. If the
fitness value of xw(new) is better than the current one, xw will be replaced by the new one.
Otherwise, the new position for the worst frog is obtained by exchanging information
between memeplexes according to the following equation:

xwðnewÞ ¼ xw þ si ¼ xw þ r2 3 ðxg � xwÞ (8)

where r2 is a random number within a range [1,1]. If the fitness value of xw(new) is better than
the current one, xw will be replaced by the new one. Otherwise, if the resulting leap does not
produce any improvement for the worst frog, then the new position for the worst frog is
generated randomlywithin a specified range. After a specified number ofmemetic evolutionary
steps, a new population of frogs is produced by combining thememeplexes through a shuffling
process that helps to promote a global information interchange between the frogs. Creation of
memeplexes, local search within memeplex and shuffling of memeplexes are continued until
some termination condition is reached. Figure 3 depicts the flow diagram of SFL.

3.2.3 Shuffled Differential Evolution. SDE is a hybridized meta-heuristic approach
developed by the fusion of evolutionary operations of DEwith the shuffled complex evolution
of SFLA. Though smaller parameter space size and quick convergence are the eminent
features of DE, still it may occasionally face the problem of premature convergence and
stagnation. Similarly, the insufficient learning mechanism of SFLA may lead to non-
comprehensive solution domain exploration. Hence blending of the two popular approaches
as a single one is suggested here to surpass the intrinsic limitations of both and emphasizing
in the meanwhile on their betterment [17–20]. In SDE, the initial population vector is divided
into subpopulations using the sorting and division process as used in SFL. Then the
evolutionary steps of DE such as mutation, crossover and selection are applied on each
subpopulation to generate a new set of vectors. In each iterative step, the individual of the
current subpopulation is treated as a target vector. Through the mutation process, a mutant
vector is generated for each target vector. Then by applying crossover operation to mutant
and target vector, a new trial vector is generated. A trial vector having a better fitness value
replaces the target vector in the next iterative step. After applying the mutation, crossover
and selection steps to each subpopulation for pre-specified iterative steps, then using the
shuffling technique of SFL the vectors of all subpopulations are merged to generate a new set
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of population. Unlike original SFL, with this new approach, all the vectors (termed as frogs in
SFL) take part in the population evolution and the local search process of SFL is enhanced by
the evolutionary steps of DE. A suitable proportion between global and local exploration is
also attained by adapting the control parameters of SDE within a range.

The detailed steps of Shuffled Differential Evolution based learning algorithm for PSNN
are illustrated as follows:

Step 1: Initialization of controlling parameters of SDE:

• The parameters of SDE such as Number of Iterations (NI), population size (NP),
subpopulations (s), iterative steps for each subpopulation (si), upper and lower bound of
scaling factor (FU, FL), upper and lower bound of crossover rate (CRU, CRL) are set in the
preliminary step.

Step 2: Encoding of PSNN weights to vector position of SDE:

• According to the population size, the position of each individual in the population
vector is generated randomly, representing possible weight vectors of PSNN in the
following format:

Fr 5 [w0, w1,1,w2,1, . . . ,wd,1, . . . ,w1,p,w2,p, . . . , wd,p]
where w0 is the bias value, wr,c is the weight corresponding to the rth input node joined

with cth hidden layer node.

Initialize controlling parameters of SFL 

Randomly initialize Frog population  

Calculate fitness value of each frog 

Distribute frogs in to m memeplexes 

Local Search: iteratively update the worst 

frog of each memeplex 

Shuffling of memeplexes 

Is termination 

condition 

satisfied? 

Save the best frog to represent the solution vector 

No 

Yes

Figure 3.
Detailed steps of

Shuffled Frog Leaping
Algorithm.
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Step 3: Fitness calculation of each vector:

• Measure the objective function value of each individual vector using Eq. (4).

Step 4: Subpopulation formation:

• The vectors are rearranged according to their decreasing order of fitness values.

• Then the sorted vectors are partitioned into s number of subpopulations. Each subset
contains n vectors such that NP5 s3 n. The partition is carried out, such that a vector
having maximum fitness value will put in the first subset, accordingly the next vector
in the second subset and so on.

• Then the vector with the best position within each subpopulation is represented as tb.

Step 5: Updation of subpopulations:

• The new location for the worst frog is obtained by exchanging information in
subpopulations by applying mutation, crossover and selection operations.

• Mutation:With a scaling factor F, amutant vector vi is generated from the target vector
ti as follows:

vij ¼ tij þ F 3 ðtb;j � tijÞ þ F 3
�
tr1 j � tr2 j

�
where r1 ≠ r2 ≠ i

(9)

• Crossover: A trial vector ui is obtained by conjoining the mutant vector with the target
vector through the following crossover equation:

uij ¼ vij if rand ½0; 1�#cr or j ¼ jrand
else tij

(10)

Selection: Out of trial and target vector, the one showing less fitness value is selected to the
next generation as follows:

if f ðuiÞ < f ðtiÞ
ti ¼ ui

(11)

• Repeat the mutation, crossover and selection operations for each vector of each
subpopulation according to a specific number of iterative steps (si).

Step 6: Shuffling Process:

• The vectors of all subpopulations are again shuffled and arranged to accomplish the
loop of evolution.

Step 7: Adaptation of controlling parameters:

• The parameters F and CR are adapted as follows:

FðtÞ ¼ FU � ðFU � FLÞ 3 t=NI
CRðtÞ ¼ CRU � ðCRU � CRLÞ 3 t=NI

(12)

Repeat steps 1 through 7 until the number of iterations NI is attained.
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3.3 Detailed steps of PSNN-SDE for currency exchange rate prediction
This section provides details of PSNN-SDE to predict future currency exchange rate
direction. The framework of the proposed PSNN-SDE model is shown in Figure 4.

Step 1: Collection of the data set

Initially, real exchange rate prices are collected in due time.

Step 2: Data preprocessing

Through data preprocessing the raw time series data is transformed into an acceptable input-
output form for a machine learning technique. The preprocessing steps included in the study
are listed below:

Historical currency 
exchange rates 

Preparation of training and 
testing samples 

Creation of PSNN 
Network structure  

Training PSNN using SDE 

Initializing controlling 
parameters of SDE 

Encoding PSNN weights to 
vector position of SDE 

Fitness calculation of each vector Subpopulation formation 

Updation of subpopulations  

Shuffling of subpopulations Stop

No 

Yes

Trained PSNN 
Testing Data 

Performance 
evaluation of PSNN-

SDE 

Data Pre-processing 

Data normalization

Input output preparation

Mutation Crossover Selection

Fix the best vector position as the weights of PSNN 

Figure 4.
Detailed architecture of

PSNN-SDE.
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a) Data normalization

Originally collected exchange rate prices are continuous in nature. So they are scaled in the
range to [0, 1] using the min max normalization as follows:

nv ¼ v� vmin

vmax � vmin

(13)

Where

nv 5 normalized value.

v 5 value to be normalized

vmin 5 minimum value of the series to be normalized

vmax 5 maximum value of the series to be normalized

b) Input output preparation

Applying a sliding window, with a window size w and prediction horizon hr, the normalized
exchange rate prices related to consecutive w trading days along with their simple moving
average are arranged to create the input row vector, whereas the normalized exchange rate
prices related to (w þ hr)th day is set as its corresponding output pattern. In each step, the
sliding window is shifted one position by dropping the data in beginning and adding a new in
the end.

Step 4: Preparation of training and testing samples

After arranging the input-output vectors through data preprocessing, two third of these are
utilized as in-sample data and the rest are kept as out-sample data. The in-sample data are
used for training and validation of the predictor model. Finally, the model performance is
tested over out-sample data.

Step 5: Network structure creation of PSNN

PSNN is a simple feedforward network structure with three layers. The number of neurons in
the first layer of PSNN is fixed to (wþ 1) to represent the w normalized exchange rate values
corresponding to each trading day andmoving average of that. The output layer contains one
node to produce the predicted currency exchange rate price. In this study, the number of
hidden layer nodes is set to a value one more than half of the sum of the number of input and
output layer nodes. Then a weight vector having a size equal to one more than the product of
the input layer and hidden layer nodes is initialized randomly within a given range, which is
further estimated by a learning algorithm.

Step 6: Training Using SDE

During the training phase, the network is adjusted over in-sample data for identifying the
suitable weights of PSNN. The position of each individual vector of the population is
randomly initialized within [�1, 1] according to the population size, that specifies the weight
of the network. Then the fitness function value of each individual is obtained by applying the
weights specified in each individual in the Eq. (3) with a nonlinear tanh ( ) function. By
repeatedly applying the basic operations of SDE based learning algorithm such as division of
initial population to subpopulations, updating individuals of subpopulations through
mutation, crossover and selection and then shuffling of subpopulations, the weight vectors
specified in the population are updated iteratively. Finally, the best vector position is fixed as
the weights of PSNN and the network is used for testing.
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Step 7: Performance Evaluation

In the testing process, the performance of PSNN is accessed by calibrating the divergence
between actual and predicted exchange rate prices through three statistical error metrics
such as RMSE, Mean Absolute Percentage Error (MAPE), Mean square error (MSE) along
with Theil’s U statistic and correlation coefficient. The MAPE and MSE are defined as
follows:

MAPE ¼ 1

N

XN
k¼1

yk �byk
yk

���� ���� 3 100 (14)

MSE ¼ 1

N

XN
k¼1

yk �bykð Þ2 (15)

where

yk 5 actual closing price on kth daybyk 5 predicted closing price on kth day

N 5 number of data samples.

A ratio of the accuracy of the proposed model to that of a naı€ve forecast model is calculated
using Theil’s U statistic as follows:

Theil
0
s U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

k¼1
yk�byk
yk

� �2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

k¼1
yk�ykþ1

yk

� �2r (16)

Theil’s U statistic is a relative accuracymeasure that compares the forecasted results with the
results of forecasting of a naı€ve forecast model [1,11,21]. Here the numerator describes the
degree of deviation between the actual prices and the predicted prices corresponding to the
proposed model, whereas the denominator describes the degree of fluctuation corresponding
to a Naı€ve forecast model. Naı€ve forecast model is a one step ahead trivial predictor model in
which the predicted value is assumed to be the same as the last observation. The Theil’s U
value equal to 1 implies the equal performance of the model with that of the naı€ve forecast
model, which in turn suggests that it is impossible to predict the prices due to its random
nature. A value greater than 1 indicates the worse performance of the model compared to a
naı€ve forecast model, whereas a value less than 1 expresses better attainment of the model
compared to a naı€ve forecastmodel. A better predictormodel always suggests Theil’s U value
closer towards 0.

4. Experimental result analysis
For validating the predictability of the proposed model, the daily exchange rate prices of US
Dollar (USD) in opposition to Swiss Franc (CHF) and Japanese Yen (JPY) are gathered in due
time of 1/1/2014 to 28/10/2016 and put forward for data preprocessing. The number of
samples collected for each set is 738. Initial simulations are carried out for predicting the
exchange rate prices for next day ahead with a window size of 5. Further, it is extended for
other prediction horizons. The generated 733 input-output patterns through the sliding
window process are further partitioned into in-sample and out-sample for training, validation
and testing of the model. The number of patterns belongs to the in-sample set is 586, that is
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generated from daily exchange rates gathered during period 1/1/2014 to 6/4/2016 and
number patterns in the out-sample set is 147 generated from exchange rates gathered during
period 7/4/2016 to 28/10/2016. A 5 fold cross-validation is used for measuring the
generalization ability of the network. The in-sample data set is divided into 5 groups. Out
of these 5 groups, 4 groups are used for training and the other is used for validation. The entire
process is carried out for 10 independent runs. After input-output preparation, the structure of
PSNN is created with 6 neurons in the first layer, 4 summation units in the middle layer and 1
product unit in the output layer. Then a weight vector having a row size of 25 is initialized
randomly, which is further estimated through the training process of the network. A
comparative assessment of the PSNN is observed with respect to different meta-heuristic
based training process such as the proposed SDE, DE, SFL and PSO. In all the learning
algorithms, minimization of RMSE is set as the cost function. The values of control parameters
of different meta-heuristic learning algorithms are set through simulations for both the
dataset. As the performance of any evolutionary algorithm depends on its selected controlling
parameters and it is completely application oriented, so in this study, these values are set
according to the suggested values during simulations. The set of parameter settings of
different meta-heuristic algorithms considered for the experiment are listed in Table 1.
Prediction ability of a model can be judged as a good one through its lower forecasting errors
obtained over out-sample data. Tables 2 and 3 report the prediction output of PSNN with
different learning algorithms.

The observations corresponding to USD/CHF dataset clearly depicts the least RMSE,
MAPE, Theil’s U, MSE values and a higher correlation coefficient of PSNN-SDE model
compared to other models. Whereas the RMSE, Theil’sU, MSE and correlation coefficient
values corresponding to PSNN-SDE model and MAPE value corresponding to PSNN-DE
model seem better for USD/JPY dataset. In both the data sets, the Theil’s U value less than

SDE DE SFL PSO

Population size: Population size: Population size: Population size:
NP 5 30 NP 5 30 NP 5 30 NP 5 30
Memeplex size:
m 5 5

Crossover rate:
Cr 5 0.9

Memeplex size:
m 5 5

Cognitive and social
acceleration constants:

Iterative steps for
memeplex:
im 5 10

Mutation scale:
F5 iteratively decreases
between 0.5 and 0.2

Iterative steps for
memeplex:
im 5 10

C1 5 1.9
C2 5 1.9

F 5 iteratively decreases
between 0.5 and 0.2
Cr 5 iteratively
decreases between 0.9
and 0.5
Number of iterations:
NI 5 100

Number of iterations:
NI 5 100

Number of
iterations:
NI 5 100

Inertia Weight:
f 5 iteratively decreases
between 0.8 and 0.4
Number of iterations:
NI 5 100

Models RMSE MAPE Theil’s U MSE Correlation Coefficient

PSNN-SDE 0.0247 0.3738 0.1191 0.0006 0.9006
PSNN-DE 0.0425 0.6407 0.2132 0.0018 0.7016
PSNN-SFL 0.0394 0.6142 0.1908 0.0016 0.8008
PSNN-PSO 0.0560 0.8849 0.2730 0.0031 0.5993

Bold values in the table represents better results obtained by the model in comparision to other models.

Table 1.
Control parameters of
different evolutionary
algorithms.

Table 2.
Prediction output of
PSNN with different
learning algorithms
over out-sample data of
USD/CHF data set.
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1 clearly indicates the better performance of the predictor models in comparison to the
naı€ve forecast model. The better convergence of PSNN-SDE compared to PSNN-DE,
PSNN-SFL and PSNN-PSO is also shown for two data sets in Figures 5 and 6. Figures 7 and
8 outline the one day ahead predicted exchange rate prices obtained by the proposed
PSNN-SDE model with the actual prices, both for USD/CHF and USD/JPY data set
respectively.

The statistical significance of the proposed model is supported by a Kolmogorov-Smirnov
Predictive Accuracy (KSPA) test [42]. Table 4 gives the p and h values of the KSPA test result
performed over the absolute value of forecast errorswith a 5%significance level. An h value 1
and p value less than 0.05 obtained fromKSPA test statistically indicates that the outcome of
compared predictor models is different. Most of the cases of KSPA test corresponding to
Table 4 provide sufficient indication to conclude that the proposed PSNN-SDEmodel reports
a better forecasting accuracy compared to PSNN-DE, PSNN-SFL and PSNN-PSO models
from a statistical perspective.

Finally, analyzing the RMSE error specified in Table 5 with different prediction horizons
such as 2, 3, 5, 7, 10 and 15, it is also clear that, the PSNN-SDE model provides less error
statistics with other prediction horizons compared to PSNN-DE, PSNN-SFL, and PSNN-PSO
models.
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Models RMSE MAPE Theil’s U MSE Correlation Coefficient

PSNN-SDE 0.0321 0.6745 0.2032 0.0009 0.9602
PSNN-DE 0.0338 0.6670 0.2068 0.0011 0.9560
PSNN-SFL 0.0370 0.7740 0.2204 0.0014 0.9496
PSNN-PSO 0.0361 0.7479 0.2156 0.0013 0.9550

Bold values in the table represents better results obtained by the model in comparision to other models.

Figure 5.
RMSE comparison of
PSNN with SDE, DE,
SFL, and PSO based

training algorithm for
USD/CHF data set.

Table 3.
Prediction output of
PSNN with different
learning algorithms

over out-sample data of
USD/JPY data set.
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5. Conclusion
In this study, the authors have explored the effectiveness of a hybrid learning technique
termed as Shuffled Differential Evolution (SDE) in estimating the unrevealed parameters of a
Pi-Sigma Network in application to prediction of future currency exchange rates based on
past observations. Integration of the evolutionary steps of DE with the partitioning and
random shuffling scheme of SFL in the hybrid SDE technique helps in improving the overall
performance of PSNN network. A simulation for the comprehensive evaluation of the
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Figure 6.
RMSE comparison of
PSNN with SDE, DE,
SFL, and PSO based
training algorithm for
USD/JPY data set.

Figure 7.
Output of PSNN-SDE
for USD/CHF data set
with prediction
horizon 1.
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PSNN-SDE model is presented over two currencies such as USD/CHF and USD/JPY. The
evaluation includes several performance measures such as RMSE, MAPE, Theil’s U statistic,
and KSPA test. The model performance is also observed with different prediction horizons.
From the decisive observations of prediction errors and result of KSPA test, it is clear that the
PSNN-SDE model produces enhanced forecasting accuracy than other predictor models
included in the examination. Future research will involve exploring SDE for both structure
and parameter optimization of PSNN. Determining the best choice of input features of the
network model to improve prediction accuracy using evolutionary techniques will also be
suggested.
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Prediction output of PSNN-SDE for USD/JPY data set
actual

predicted (insample)

predicted (outsample)

Data set PSNN-SDE/PSNN-DE PSNN-SDE/PSNN-SFL PSNN-SDE/PSNN-PSO

USD/CHF 0.0001 (1) 0.0000 (1) 0.0002 (1)
USD/JPY 0.0369 (1) 0.0294 (1) 0.0297 (1)

Data set Model 2 3 5 7 10 15

USD/CHF PSNN-SDE 0.0312 0.0485 0.0594 0.0698 0.0896 0.1189
PSNN-DE 0.0426 0.0566 0.0625 0.0716 0.1131 0.1194
PSNN-SFL 0.0392 0.0604 0.0638 0.0937 0.0971 0.1249
PSNN-PSO 0.0388 0.0504 0.0789 0.0867 0.0983 0.1206

USD/JPY PSNN-SDE 0.0545 0.0657 0.0748 0.0826 0.1085 0.1211
PSNN-DE 0.0582 0.0669 0.0753 0.0843 0.1097 0.1293
PSNN-SFL 0.0561 0.0663 0.0767 0.0873 0.1102 0.1396
PSNN-PSO 0.0564 0.0671 0.0828 0.0977 0.1108 0.1375

Bold values in the table represents better results obtained by the model in comparision to other models.

Figure 8.
Output of PSNN-SDE
for USD/JPY data set

with prediction
horizon 1.

Table 4.
P and h values of

Kolmogorov-
Smirnov test.

Table 5.
Prediction output with

different prediction
horizons.
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Abbreviations:
ANN Artificial Neural Network
ARMA Auto Regressive Moving Average
ARIMA Auto Regressive Integrated Moving Average
CGV Conditional Generalized Variance
DHS Differential Harmony Search
FLANN Functional Link Artificial Neural Network
GRNN Generalized Regression Network
KSPA Kolmogorov-Smirnov Predictive Accuracy
MSR Markov Switching Regression
MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perception Network
NI Number of Iterations
PSNN Pi-Sigma Neural Network
PSO Particle Swarm Optimization
RBF Radial Basis Function
RNN Recurrent Neural Network
RSOM Recurrent Self-Organizing Map
RMSE Root Mean Squared Error
SDE Shuffled Differential Evolution
SFLA Shuffled Frog Leaping Algorithm
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