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Abstract
Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors
(motes), which typically consume high energy in radio communication that mainly leans on data
transmission within the network. Furthermore, dissemination mode in WSN usually produces noisy values,
incorrect measurements or missing information that affect the behaviour of WSN. In this article, a
Distributed Data Predictive Model (DDPM) was proposed to extend the network lifetime by decreasing the
consumption in the energy of sensor nodes. It was built upon a distributive clustering model for predicting
dissemination-faults in WSN. The proposed model was developed using Recursive least squares (RLS)
adaptive filter integrated with a Finite Impulse Response (FIR) filter, for removing unwanted reflections and
noise accompanying of the transferred signals among the sensors, aiming to minimize the size of transferred
data for providing energy efficient. The experimental results demonstrated that DDPM reduced the rate of
data transmission to ∼20%. Also, it decreased the energy consumption to 95% throughout the dataset
sample and upgraded the performance of the sensory network by about 19.5%. Thus, it prolonged the
lifetime of the network.
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1. Introduction
Wireless Sensor Network (WSN) comprises a Base Station (BS), countless hubs and self-
organized tiny devices called sensor nodes. Each sensor encompasses sensing module in
which a number of minor sensors, ices, radio- transceiver, restricted battery, memory and
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microcontroller module which involves Controller Processor Unit (CPU) and Digital Signal
Processor (DSP) chipsets. These sensors perform a function in an autonomous manner in the
spatial field to get the required values. These sensors are densely deployed and distributed
to monitor many ecological conditions, like relative humidity, pressure, temperature,
motion, sound pollutants or vibration at different locations. They have to coordinate with
each other, to acquire information about the environment. All the aggregated data are
transferred to the sink node where valuable data are sorted for managing the vital
application. These devices can be deployed for covering some specific domains as
reporting the occurrences of any events of interest, aggregation of environmental data,
surveillance and target tracking. Although, WSNs have wide applications plentiful gains
in battlefield observation, healthcare, weather forecasting and disaster detection [1]. They
suffer from redundant transmission and retransmission of network packets in routing,
deficient in terms of computation and energy resources. In addition, Sensor networks
deploy in inhospitable environments and often need to be adapted to changes in the
environmental parameters or users. So, they are requiring to self-awareness and adaptive
systems that provide the solution for overcoming the computational complexities, the
appearance of transient deployment faults and permanent node failures and suddenly
energy sever.

The battery-operated sensors organize themselves according to a certain topology and
transmission range for transferring data packets from the source node to traverse multiple
hops before they reach terminal. Through WSN communication, thousands of nodes sense
the massive volume of data and periodically convey it to a number of hubs; this is resulting in
a large amount of data accumulated over a short period and the appearance of many faults
through dissemination. Thus, if data dissemination failure occurs at the level of Cluster Head
(CH), the aggregate dataset at the head will hold up and CH will emerge a disabled in BS. So,
the issue of the huge bulk of datasets produced by these sensors forms a very serious
challenge. Further, data communication in WSN consumes a significant amount of energy
and occupies a large volume of memory. In order to solve the huge volume of data, we need to
solve all the related issues with data dissemination like processing capability and limitation
in memory [2]. Although there are limitations facing WSN, WSNs enabled to contribute in
various applications and became one of the most vital technologies throughout the recent
twenty years. Actually, WSN enables to extend into several zones where a human cannot
cover it.

Distributed wireless sensors sense the surrounding events, aggregate them and
then disseminate them to the CH. The cluster-head node receives all these data and
aggregates it before transferring it to the base station. Therefore, data dissemination is
a basic factor in the mission of WSN, while noisy data affect the behaviour of the
sensory network. Data diffusion may produce erroneous observed values that may
degrade the reliability of the network due to its non-accuracy; also these data are not
fully stored due to limited memory. So, several investigators studied energy awareness
during data dissemination via routing protocol and considered it as an essential design
issue. They depend on the nature of the application and network topology in designing
the infrastructure of the network [3]. However, computational and energy resources
still represent serious restrictions accompany applications of WSN. The aggregated
data often suffer from some inaccuracies and incompleteness [4]. Inaccurate/imperfect
measurements in WSN data are often referred to as WSN abnormalities. Abnormalities
are defined as the observations that do not correspond to well-defined normal
behaviour. Abnormalities, in WSNs, are generated from faults, node malfunctions/
failures and attacks. So, it is important to recognize the kind of abnormality to
effectively respond.
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The efforts in the proposed work (DDPM) were devoted to reducing the rate of data
transmission during communication among the nodes in theWSN clusters for conserving the
energy. Initially, DDPM emulates elimination the rapid energy depletion and the sudden
faults associated with the dissemination operation in WSN. The proposed DDPM
encompasses two main paradigms are, 1) Data prediction paradigm: is a dual prediction
model built at the cluster head level. During the deployment mode, the distributed sensor
nodes disseminate huge data, in form of data packets, at equal time intervals to the head. In
case appearance of fault or if the sensed measurements have lost, the cluster head will
forecast the missing values based on the historical readings of such sensor nodes. 2)
Prediction based-filtering paradigm: enables the model to obtain high convergence of
transferred signals. Filtering model refines the signal by removing noise accompanying the
transferred signals through integrating two adaptive filters are RLS adaptive filter and FIR
filter. The integrated filters were used to allow the sensor nodes to adapt the sensing signals
for providing high convergence of the signals. Thus, it will provide a great reduction in power
consumption. Finally, methodical evaluation to assess the efficiency of the proposed DDPM,
by estimating the rate of data transmission via RMSE and measuring the performance of
network using MAPE.

The rest of the research was organized as: Section 2 presents the previous work related to
this topic. Section 3 shows problem preliminaries and describes the proposal distributed data-
prediction modelling and the suggested algorithm. The evaluation and analytical results are
presented in Section 4.

2. Related works
Although WSNs have become the main rate in the field of observation and processing,
WSN still suffers from many challenges degrade system accuracy and the life-span
quality of any WSN oriented applications. The recent researches exploring
advancements in WSN addressed WSN challenges as the problem of energy
management, difficulties of achieving efficient processing and communication
Patterns. It also reviewed three categories of faults, beyond WSN challenges and
misbehaving of WSN are sensor reading faults, software faults and hardware faults [5].
So, the recent techniques exploring solutions for WSN faults and challenges attract a
great interest bymost of the researchers in the current decade. Generally, the prediction is
one of the solutions and it is an essential action to completely provide the estimation of
network readings to guarantee the credibility of the network. The prediction techniques
that have been implemented and evaluated on different WSN datasets are still
insufficient. In this section, the various studies which have been performed regarding
the prediction techniques for WSN were mentioned. In 2015, Zhang et al. [6] proposed a
dynamic and systematic data reduction approach called DR3. DR3 architecture
encompassed three parallel dynamic error control mechanisms to optimize the trade-
off between energy saving and data, the mechanism achieves the following 1) Internal
Group Data Reduction (IGDR): a centroid node (the selected node according to selection
algorithm) will be active through a certain sensing schedule while the remaining sensors
are sleeping. The packets associated with originally active nodes will be compressed; 2)
Adaptive Lower Duty Cycle Data Reduction (ALDCDR): the centroid node can switch into
sleeping status to save its energy. Those patterns can be used for predicting the future
outcome by the sensor node; 3) Correlated Group Date Reduction (CGDR): the sensing
readings have a high correlation with other groups into sleep status. The sleep sensor
group’s sensing reading can be estimated using its correlated group’s reading. Samarah
et al. [7] constructed a data prediction model built upon sensor nodes and used the cloud
system to generate data. The purpose of the proposed model was, prevent sensor nodes
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from transferring a large amount of data through deployment cycle and allow to them
transferring just differ data than original data (previously the transferred data), hence
reduce the energy consumption of the sensor’s battery The prediction model was
implemented by a line equation through two n-dimensional vectors in n-space. Also, Tan
and Wu [8] applied the hierarchical Least-Mean-Square (HLMS) adaptive filter on WSN
for forecasting data values between sensor and sink. The adaptive filter was employed at
both the sensor and sink, also was used to calculate an identical prediction by using the
hierarchical LMS prediction filter rules.

In 2016, Mashere et al. [9] introduced a Controlled Duty Cycle scheme (CDC) based on
throttling techniques in WSN. The scheme consisted of threshold level sampling data
reduction algorithm and adaptive level sampling data reduction algorithm. The proposed
CDC transferred data from a source node through intermediate nodes to the sink node,
then select the shortest path for minimizing energy consumption in WSN. Also, Saoudi
et al. [10] proposed a new collaborative fire prediction and data reduction method to
divide the node set into clusters. Each node can individually detect fires using
classification techniques. In 2017, El-Telbany andMaged [11] presented a novel approach
hybridized LMS adaptive filter with matrix completion to minimize the necessary
information that sensors transmit at WSN. The approach utilized both adaptive filters
and matrix completion for WSNs. The importance of approach lies in (i) it deals with
limited resources of the sensors, (ii) it allows sensing nodes to adaptively samples the
sensed data based on changing the pattern and randomly, (iii) it reconstructs the missing
data with excellent precision at the sink which collect the data from sensors. In 2018,
Diwakaran et al. [12] introduced a data prediction technique for reducing the amount of
data transmission. They discussed decreasing the consumption of energy by filtering to
remove the unwanted number of transmission. In this technique, prior knowledge is
utilized in predicting the expected values. This was achieved using the Least Mean
Square (LMS) algorithm. Fathy et al. [13] propose an Adaptive Method for Data Reduction
(AM-DR). Themethod is a prediction-based data reduction that uses LMS adaptive filters.
AM-DR is based on a combination of two coupled LMS filters with differing sizes for
estimating the next measured values both at the source and the sink node such that
sensor nodes have transmitted only their immediate sensed values that deviate
significantly from the predicted values.

3. Distributed data predictive model (DDPM)
A Distributed Self-Healing Approach (DSHA) mechanism for WSN was previously
presented [14]. The investigators succeeded in detecting the defects in hardware
components of the sensor node, diagnosing the type of failure as well as applying
countermeasures, which included repair of the faulty node by isolating malfunction nodes
and topology modification. Generally, the WSN significantly suffers from short lifespan,
because of several problems as generating insufficient communication overhead and the
sudden faults of deployment operation. Data dissemination is considered the main factor of
energy consumption in WSN compared to treatment and detection operations [16]. The
present work extended the previous work [14] by introducing a predictive based-filtering
model, in order to overcome the challenge of energy resource and problems of the
deployment in the designated network. The proposed model (DDPM)significantly reduce
the rate of data transmission through predicting the upcoming data and missing readings
and then removing the noise associated to the transferred signals, for energy-efficient for
WSN, as depicted in the algorithm (1). This model mainly differs in technique and amount
of data needed to build the model.
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Algorithm (1): The proposed predictive modelling for WSN

3.1 Problem preliminaries
DDPM was based on the studied clustering algorithm in a previous work [14], which was
based on Low-energy Adaptive Clustering Hierarchy (LEACH) presented in [15]. In the
designing, the proposed sensor network involved in 9 clusters, where each cluster composed
of one node represented as a cluster head (CH) and 5 members, which collected a set of
measurements related to the atmosphere readings as temperature, humidity and pressure.
The proposed DDPM was built upon the following assumptions:

1. Sensor nodes (Si) in the designated network have homogenous characteristics. They
report their readings to their cluster head. Also, it has an ID key that expresses its
presence inside the group. ID keys are assigned to sensor nodes before deployment
mode.

2. Cluster head (CH) was selected by election according to criteria as a battery power
(high-energy) and the sum of the distance between the cluster head and other nodes is
small. Consequently, the elected CH receives welcome messages from the cluster
members and then obtains a list of IDs and respective reply messages continuously.
As it directs instructions to the members.

Start 

Preprocessing

(CH receives data transmitted by number of 

clustering nodes via synchronized epochs)

Data cleaning

(CH assigns duplicated data and 

intermitted data / missed data)

Data Smoothing

(Filtering transmitted data to remove 

noise and reduce error rate among them 

through RLS filter)

Data Integration

(Predict lost measurements of transmitted 

data by its historical   readings compered to 

measurements transmitted by neighbors in 

the same epoch)

The processed output data (y) transmit 

to Sink

End

Initialization

(Sensors broadcast the observed data (x) to 

the cluster head (CH) via synchronized 

epochs through dissemination cycles)
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3. VX was referred to a vector of real numbers that represent the sensor readings over a
time period.

Vx ¼ ðv1; v2; . . . vnÞ (1)

4. Timewas assumed to be divided into a set of equal intervals called time periods (Ti). Ti

represents the time periods over the sensor’s data stream.

Ti ¼ ðt1; t2; . . . tnÞ (2)

5. VNANwas represented by themissing event and is inferred by observing the following
vectors:

a. Previous measurements vector of each missing value was represented as:

Xt−1 ¼ ðX11X12 . . .XMNÞ (3)

b. subsequent measurements vector of missing value was represented as:

Ytþ1 ¼ ðY11Y12 . . .YMNÞ (4)

6. Through the clustering formation, the introduced number of sensor nodes (N) compare
with the desired number of cluster heads (H) in each round, by applying the given Eq.
(1); if N is less than H, the nodes become CHs, as simplified in the flowchart (1).

H ¼ C ÷ 1� C 3

�
r mod

1

C

�
If n ∈ G (5)

where: H is the desired percentage of cluster heads, r is the current round, G is the set of
nodes that have not been cluster heads in the last 1/C rounds.

Flowchart (1): The applied clustering algorithm in DDPM
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7. The information bearing noisy signal is assumed as a sine wave that is corrupted due
to interferences during communication.

3.2 Model description and problem formulation
In an implementation, the proposed modelling (DDPM) scenario was applied as follow:

A) Dissemination mode/ Mobility mode: Every node in the cluster transfers observations to
the head in form of data packets via reply message that composes of ID node, time and
information. Cluster head records the readings of the connected nodes in a reporting list.

B) Classification mode: This mode was accomplished at the cluster head level as follows.

• If CH did not receive a reply message from Si according to a default timing period
throughout one dissemination mode, cluster head will classify that as transit fault and
apply Eq. (6) in the generation model.

• If sensor node (Si) did not transmit any data to CH in mobility mode throughout a number
of epochs, later it transferred data to CH over new epoch, the head will classify that as an
intermittent fault and generates Eq. (7).

• If the sensor repeats the previous error (do not send any data to the group head) in another
dissemination mode among its data transferring intervals, CH will classify them as
redundancy fault. This is exemplified in Algorithm (2).

• If Si transferred random values at an arbitrary time to CH or stopped broadcasting data, in
this case, CH will classify that fault as byzantine. This was illustrated in Eq. (7).

C) Data generation mode: The performance of this mode was adequately correlated with
sensing session.At the sensor level, certain amounts of datawere collected by the sensors
present in each cluster throughout the sensing session.Where each node sent the data to
the head without making predictions. At the cluster head level, a proper estimation of
sensor status was made through this mode. So, if CH did not receive any data from any
sensor (Si), it will depend on the historical readings to generate standard values of the
missing events (NAN). In the proposed DDPM, generation mode covers two trends are:
energy drain trend and non-permanent fault (dissemination fault) trend. To find the
missing values (NAN) due to the first trend, DDPM was based on the measurements
previously sent by them over near periods of missing period. Then, CH obtained NAN
measurement at (t) by computing the mean function of captured measurements at (t�1).
Mean functionutilized in calculating (VNAN ) wasbuilt upon anumber of past readingsvia
prior time series (in case, the drain of energy). Finding the mean value of missing event
(NAN) due to impermanent fault was built upon the pervious reading at (t�1) and
subsequent reading at (tþ1). Thus the mechanism performs:

- Absence of a reply message or appearance of a transit fault

VNAN ¼ 1

N

XN
n¼1

ðxt−1; ytþ1Þ t þ 1 > t > t � 1 (6)

- Appearance of intermittent fault & byzantine fault, compute with:

VNAN ¼ 1

N

XN
n¼1

ðxt−1; xt−2Þ t � 1 > t > t � 2 (7)
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- Occurrence of energy depletion & redundancy fault

VNAN ¼ 1

N

XN
n¼1

xt−1 t > t � 1 (8)

By the time, the head node will use neighbouring reading to recover the missing events,

VNAN ¼ 1

Nneigh

XN
n¼1

Vneigh t < tn (9)

whereVNAN is the meanmeasurement of missing event and is continually dependent on time,
N is the number of readings involved in generation process and was used to deduce missing
event, xt−1 is the previously data readings and it may be the concludedmeant value, ytþ1 is the
subsequent reading of missing measurement that used to infer the missing values due to the
occurrence of the intermittent error, xt−2 is the previously measurement of xt−1, Vt is the
deduced mean value by calculating the formerly measurements at various intervals and was
used to locate byzantine the fault.

D) Data filtering & modelling mode: in this subsection, the two adaptive filters have
integrated to accomplish adaption operation to the transferred signals:

1) Recursive Least Squares (RLS) is an adaptive filter algorithm that recursively
finds the coefficients that minimize a weighted linear least squares cost function
relating to the input signals. This approach, in contrast to the least mean squares
(LMS), aims to reduce themean square error. In the derivation of RLS, the input signals
of the clustering sensor are considered deterministic. Thismeant is related to the series
of time, in which no randomness is involved in reporting of future readings of the
cluster. LMS and similar algorithms are considered stochastic when compared tomost
of its competitors, where they exhibit extremely fast convergence. RLS algorithm is
known for their excellent performance when applied in time-varying environments. In
thiswork, the author tried to develop RLS algorithm, by using the RLS filter integrated
with a FIR filter, to reduce error satisfactorily. RLS algorithm estimates the
coefficients needed to refine the input signal to obtain the output signal. At the same
time, this input signal was converted to the desired signal via FIR adaptive filter for
estimating error ratio, see Figure 1. The performance of the RLS algorithm was
described in three basic equations as:

1Þ The output of the filter : yðnÞ ¼ wðn� 1Þ3 xðnÞ (10)

2Þ The estimation error : eðnÞ ¼ dðnÞ � yðnÞ (11)

FIR Filter 

RLS Filter Deduc

x(n)

d(n)

y(n) e(n) Adapt w(n) Figure 1.
Diagram of the
integrated adaptive
filters model.
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3Þ Theweight adjusting : w0ðnþ 1Þ ¼ w0ðnÞ þ δw0ðnÞ
w1ðnþ 1Þ ¼ w1ðnÞ þ δw1ðnÞ . . .

wM−1ðnþ 1Þ ¼ wM−1ðnÞ þ δwM−1ðnÞ
(12)

4Þ Theweight adaptation : wðnÞ ¼ wðn� 1Þ þ kðnÞ3 eðnÞ (13)

where n is the current epoch n, xðnÞ. is the vector of the input samples observed through n,
wðnÞ is the vector of filtered weight estimated in epoch n, yðnÞ is the filtered output
through n, e(n) is the estimation error in n, d(n) is the desired signal through n. The
expansion vector kðnÞwas attained by form:

kðnÞ ¼ λ 3 xðnÞ
1þ λ 3 xðn� 1Þ 3 xðnÞ (14)

The filter length is M3M time-average correlation matrix, or the autocorrelation matrix, of
inputs vector x (n), x (n�1) . . .x (n �M þ 1). The integrated filter relied on the least square
normal equation can be written as: bW ¼ f−1

z

where z is the M 3 1 time-average cross-correlation vector between t inputs x(n), x(n � 1)
. . .x(n�Mþ 1) and the desired response d(n). The filter weights can be updated at each time

n in order to minimize error and bW ½n� is the M3 1 wt vector of the least-squares filter. While,
the inverse of the autocorrelationmatrix can be computed recursively by P (n)5f�1 (n), thus:

- bW is the weight vector can be reformulated so it can be computed recursive:bW ½n� ¼ f−1ðnÞ z ðnÞ
Substituting f �1 (n) using P (n) to become bW ½n� ¼P(n)z(n)

- f(n�1) is the “old” value of the correlation matrix and can be applied for z:

zðnÞ ¼ fzðn� 1Þ þ xðnÞd*ðnÞ
Reformulation z (n) using P(n) to obtain z!(n)15 ʎ P(n) z(n�1) þ P(n) 3 (n) d*(n)

- k(n) is a time varying vector defined as the input vector x(n), altered by f�1 (n):

kðnÞ ¼ f−1ðnÞxðnÞ ¼ PðnÞxðnÞ

• Then, P (n) can be computed recursively:

PðnÞ ¼ λ−1Pðn� 1Þ � λ−1kðnÞ x ðnÞPðn� 1Þ

• By replacing P (n) for using in z!(n), to attain

z!ðnÞPðn� 1Þzðn� 1Þ � kðnÞxðnÞPðn� 1Þzðn� 1Þ þ PðnÞxðnÞd*ðnÞ

• Substituting bW(n�1) 5 P (n) z (n), to gainbW ðn� 1Þ ¼ bwðn� 1Þ � kðnÞ x ðnÞ bw ðn� 1Þ þ PðnÞ x ðnÞd*ðnÞ
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• Then, using k (n) 5 P (n) 3 (n), to realizebW ðn� 1Þ ¼ bW ðn� 1Þ þ kðnÞ½d*ðnÞ � x ðnÞ bw ðn� 1Þ�

• Hence, using the definition of the estimated error

bW⃑ ðn� 1Þ ¼ bW ðn� 1Þ þ kðnÞε*ðnÞ
where: ε is the estimation error, built upon the old weight vector for each iteration.

2) Finite Impulse Response (FIR): is an adaptive filter without fdback, it is also
known as non-recursive digital filters, even though recursive algorithms can be used
for FIR filter realization. The output y(n) of a filter system idetermined by convolving
its input signal x(n) with its impulse response to obtain the desired signal. The output
is a weighted sum of the current and a finite number of previous values of the input. In
an implementation, the FIR filter used to acquire the desired signal. The operation is
described by the following scenario of the FIR filter is as follows:

- The continuous signal was considered is of the form:

uðtÞ ¼ a0 þ a1tþ a2tþ . . .þ amt
m

The signals sampled with period T 5 1 becomes u(t) 5 a0 þ a1t þ a2t þ . . . þ amt
m.

However, the sampled signal with a zero mean noise source e(n) were determined, thus
x(n) becomes as the form:

xðnÞ ¼ uðnÞ þ eðnÞ

- The value of u(t) with some delay (p) using an FIR filter with the input x(n - N), it can be
shown that the optimal impulse response is of the form:

h½n� ¼ c0x½n� þ c1x½n� 1� þ . . .þ cNx½n� N�
where x(n) is input signal and h(k) is filter coefficients (ci) c0, c1, c2, . . .,etc. The coefficients
(c) are constants depending on the value of (p) and N is a filter order.

- The complexity of the input with a transfer function h[n] provides a filtered output.
The mathematical model of the FIR filter is:

d½n�
Z T

0

xðn� τÞhðτÞdτ

where hðτÞ is a transfer function of an impulse response to the input. The complexity
allows the filter to be activated when the input recorded a signal at the same time value.

4. Practical results
To address the studied issue, a dataset of atmospheric changes was handled. The scalar
datasets were picked up from 54 sensors. They were deployed in the Intel Berkeley Research
lab between February 28th and April 5th (2004). These sensors were reinforced with the
stamped topology information along time with humidity, temperature, light and voltage
values once recorded every 31 s. The actual data were processed using Matlab tool, Table 1
revealed the notions used later and their explanations:
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4.1 Data generation
The longevity of WSN is based on minimization both the rates of transmission and the energy
consumption that closely correlated to sensor battery. The lifetime of a node consists of many
epochs. Each epoch includes packet transmission time represented as dissemination cycle and
sleeps scheduling stage’s execution time, Figure 2. Generally, some sensorsmay issue themissing
events (NAN) through various epochs were assigned by its historical readings. Missing values
may be appeared throughout a number of rounds, due to failures, truncated or the sleep schedule.

Practically, if a missing event (NAN) has appeared at an arbitrary time, the preceding
readings of missing event (NAN) will be set in vector Xi, and then will calculate the mean
value among them by CH to infer the lost measurement, see Figure 3. On another hand, CH

Notation Explanation

Si The ith member node in the cluster
ID Cluster identifier of sensor nodes belonging to that cluster
N Samples number of the data stream
CH Cluster head/Leader of the group
NAN Missing an event from the sensor in a definite epoch
x(n) A sample of data stream/Input signal at an instant n
y(n) The output signal of the RLS filter
w(n) The weighted signal at an instant n
e(n) The prediction error at an instant n
d(n) The desired signal/Output signal of the FIR filterbyı Predicted value induced from regression
emax Themaximal prediction error value is given at both the source node and terminal node/threshold value

X0

Transmission 

Time (T1)

n

Transmission 

Time (T2)

Transmission 

Time (Tn)

Sleep Sleep n Sleep

1
st
 epoch 

X1

2
nd

 epoch n-2 epoch

X

n-th epoch

Lifetime

Table 1.
DDPM notations and

their explanations.

Figure 2.
Synchronization
structure for the
sensor’s lifetime.

Figure 3.
Data generation of the

studied sample.
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will depend on the following readings of neighbouring nodes through duty cycle, then it will be
assigned in the Xj vector for calculating the mean value between them to represent the value of
themissing event, if loss of one sensor data or themissing event has recurred over a number of
epochs at a sensor, as illustrated in Table 2. Eqs. (6)–(9) were applied according to the type of
missing event as demonstrated inAlgorithm (2). It gives samples of a sensor’s readings through
a programming implementation. Table 3 shows generation process for the missing sample.

Algorithm (2): Data generation method for finding value missing events
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The results in Table 2 show that the sensor nodes have that ids5 4, 5 and 6 transfer data
to CH through miscellaneous epochs in a dissemination cycle. Where, CH recorded that
the aggregated measurements of humidity and light passing by sensor id 5 5 had lost.
So, CH starts for classifying the type of fault then predicting the lost events according to
Eqs. (6)–(9); the values recorded of these data sector during prediction, are given in
Table 3.

It is clear from Table 3 that CH enabled to cover the missing event by taking the mean for
the observed historical readings by first-hop neighbouring sensors during the same diffusion

Dissemination Cycle
Epoch Sensor _id temperature humidity Light

2763 4 19.9002 38.940 97.520
2764 4 19.9002 38.940 97.520
167 5 2.69964 37.77595 109.4800
330 5 2.67532 37.77595 109.4800
525 5 2.65143 37.77595 109.4800
1030 5 2.65143 37.77595 109.4800
1456 5 2.68742 37.77595 109.4800
1483 5 2.68742 37.77595 109.4800
1714 5 2.67532 37.77595 109.4800
1866 5 2.66332 37.77595 109.4800
1918 5 2.67532 37.77595 109.4800
2415 5 2.62796 37.77595 109.4800

2 6 20.4196 36.6118 121.44
6 6 19.9002 37.5737 121.44
22 6 19.42 39.2123 121.44
24 6 19.42 39.0763 121.44

Dissemination Cycle
Epoch Sensor _id temperature humidity light

2763 4 19.9002 38.940 97.520
2764 4 19.9002 38.940 97.520
167 5 2.69964 NaN NaN
330 5 2.67532 NaN NaN
525 5 2.65143 NaN NaN
1030 5 2.65143 NaN NaN
1456 5 2.68742 NaN NaN
1483 5 2.68742 NaN NaN
1714 5 2.67532 NaN NaN
1866 5 2.66332 NaN NaN
1918 5 2.67532 NaN NaN
2415 5 2.62796 NaN NaN
2 6 20.4196 36.6118 121.44
6 6 19.9002 37.5737 121.44
22 6 19.42 39.2123 121.44
24 6 19.42 39.0763 121.44

Table 3.
Prediction for missing

events over a
dissemination cycle.

Table 2.
Missing data sample

through a
dissemination cycle.

Integrated data
reduction

model

53



cycle. It was worth mentioning that the predicted values that listed in Table 3 relatively
converge to the actual values listed in Table 2.

4.2 Data filtering
In this mode, the amount of data transmission rate that delivered to CH was reduced by
accomplishing the following sequence:

4.2.1 Filtering signals acquisition stage. In this phase, the integrated adaptive filter was
operated at node and head. RLS filter was utilized to extract output signals (y), while FIR filter
was used as an inverse system to generate the desired signals (d), see Figure 4. Practically,
1000 temperature samples were picked up and were prepared as input vector (x) taking into
consideration the desired signal vector (d), which has the same length as the input signal
vector (x) to initialize the processing. The digital signal processing of FIR filter (DSP.FIR) was
constructed to filter input (x), for acquiring the desired signal (d) that was manipulated
programmatically as:

d ¼ step ðfilter; xÞ þ sin ð2xÞ þ λx ðforgetting factor λ ¼ 0:99Þ

RLS filter was utilized to refine input signal and obtain the filtered output/ predicted signal (y)
alongwith the error (e) between the reference signal (x) and the desired signal (d), see Figure 4.
Throughout each iteration, the proposed adaptive algorithm tried to nominate its coefficients,
even error (e) was reduced to as less as possible, by adapting w(n) synchronously as happens
in the second phase.

4.2.2 Noise cancellation stage. The adaptive systems may insert unwanted signals to a
useful signal. So, this phase was developed to cancel any noisy signal or unwanted
interference. Generally, a noise represents anything which changes or disrupts a signal as it
transmits between a source and destination nodes. In this phase, both FIR and RLS adaptive
filters were integrated and applied to refine the signal. In an implementation, the product of
w(n) directs into RLS Filter to extract a noise-free output signal, by adjusting the
measurement of y(n)with the existingmagnitude ofw(n) through applying Eq. (8), Algorithm
(3). The desired DSP.FIR signal d(n) compares again with the result of DSP.RLS signal y(n) to

Figure 4.
a. Representation of the
signals through a
sample of Light. b.
Representation of the
desired and predicted
signal through
humidity.
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make sure noise separation by computing e(n) through Eq. (9), also the bit error rate (BER)
was calculated by the number of bit errors per unit time. The bit error ratio (BER) is the
ratio of the number of errors to the total number of signals sent during a studied time interval
and expressed as a percentage, as shown in Table 4. Figure 5-(a) illustrates to converge the
output signals from the desired signals, and shrink the ratio of error to almost zero, in the
noise cancellation phase. While, Figure 5-(b) shows two subplots; the first subplot
demonstrates interference noise and signal, while the second subplot clarifies extracted
signal output from the integrated adaptive system.

ROUND (4)
Temperature Reference input x(n) Desired signal d(n) Output signal y(n) Error e(n)

23.35 23.56 23.56 �0.050
23.36 23.51 23.51 �3.58 e-05
23.38 23.53 23.53 �0.036
23.34 23.46 23.46 0.072
23.36 23.55 23.55 �0.036
23.35 23.50 23.50 0.018
23.36 23.53 23.51 �0.018
23.35 23.51 23.50 0.018
23.40 23.56 23.56 �0.073
23.44 23.54 23.54 �0.0941
23.46 23.46 23.46 �0.050

Bit error rate /BER �0.01937%

Humidity Reference input x(n) Desired signal d(n) Output signal y(n) Error e(n)

33.9 32.7 32.7 0.014
33.8 32.5 32.5 �0.079
33.7 32.4 32.4 �0.010
33.8 32.5 32.5 0.023
33.8 32.5 32.5 3.345 e-05
33.8 32.5 32.5 �0.012
33.9 32.6 32.5 0.030
34.0 32.7 32.7 0.079
33.9 32.6 32.6 �0.079
33.7 32.4 32.4 �0.041
33.8 32.4 32.4 0.003

Bit error rate /BER �0.00655%

Light Reference input x(n) Desired signal d(n) Output signal y(n) Error e(n)

397.44 393.409 393.407 0.0018
397.44 393.407 393.409 �0.001274
397.44 393.409 393.407 0.0019
382.72 377.996 378.839 �0.8427
397.44 393.410 392.567 0.84343
397.44 393.406 393.410 �0.003897
397.44 393.411 393.406 0.0045030
397.44 393.406 393.442 �0.0362712
397.44 393.411 393.343 0.0680422
397.44 393.405 393.443 �0.0375766
397.44 393.412 393.405 0.00710850

Bit error rate /BER 0.00046%

Table 4.
Noise cancellation of

different datasets
samples.
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Algorithm (3): Distributed data filtering algorithm

Figure 5.
Illustration of signals
convergence and noise-
cancellation via second
paradigm.
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Table 4 demonstrated that the values of BER significantly decreased below zero in the
samples of temperatures and humidity through the second paradigm. This demonstrates the
purity of the transferred signals from the noise accompanied to it and declares that, the lower
the percentage of errors, the better the performance of the system.While the obtained value of
BER from the sample of light in such a phase equivalent to zero in the same paradigm. This
reveals that the signal may be affected by other interferences such as distortion and poor
synchronization.

4.3 Analytical evaluation
The performance and accuracy of prediction were estimated using different evaluation
metrics. The used metrics were R-squared (R2), mean absolute percentage error (MAPE), root
mean squared error (RMSE), and mean absolute error (MAE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼1

n ðyi �byiÞ2
n

s
(15)

MAPE ¼ 1

n

Xn

i¼1

jxi �byij
xi

(16)

R2 ¼ 1�
Pi¼1

n ðyi �byiÞ2Pi¼1
n ðyi � yiÞ2

(17)

MAE ¼
Pi¼1

n jyi �byij
n

(18)

where xi the actual measurement as given input; yi is the filtered output sample value; y
^
ıis the

predicted value induced from linear regression between the obtained values of desired and
the output and n is the number of measurements.

The error value calculated by subtracting the predicted signal from the desired signal in
the root mean square error (RMSE) was selected as a metric for evaluating algorithm
performance. Practically, the difference between the desired value and the output value
(predicted error) was computed to identify the error (E). The estimation y

^
ı was calculated by

the filter for the input signal (x) over time index of each sample. This was done by a linear
regression of the combination of ðnÞ readings. The error value was calculated by subtracting
the predicted signal from the desired signal, and it was suckled back to adjust the weight (w)
of the filter.

The proposed DDPM reduced the volume of transferred data by each node in the cluster.
The data reduction was attained by predicting the upcoming measurement, at the sensor
node and destination level, rather than transmitting the data completely. The data will be
transmitted only if the predicted value deviates from the original value; under a predefined
threshold value, which is a maximal error deviation value and is known as prediction error
(emax). The value of emax is given at both source and destination. The sensor nodes do not
require to send their actual readings unless there is a deviation (>emax) between the predicted
sensor measurements and their actual readings. In this case, the predicted measurement
would be included in modelling and will be transmitted to CH. It is worth noting that the
researchers in [12] reported that the transmission rate is high when the threshold value (emax)
is low. Most researchers also agree that the system is more accurate when the transmission is
very low thus producing an energy efficient system. The default 0.25, 0.50, 0.75 and 1.00 were
applied throughout implementation. RMSE values were determined according to the values
of ðyi&yiÞ.
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Experimentally, in the signals acquisition phase, RMSE increased when the value of emax
increased. While, in the noise cancellation model, the value of RMSE decreased when emax

value of the clustering nodes increased. By experiments, evaluation of datasets clarified that
RMSE attained the value 0.588when emaxwas 0.25, in signals acquisition.With increasing the
value of emax up to 1.0, RMSE increased to 0.592. In contrast, MAPE attained a constant
value with rising emax to 1.0. In noise cancellation, the value of RMSE decreased from 0.24 to
0.20 when emax increased from 0.25 to 1.0. Contrary, MAPE attained a constant value with the
various emax values. This clarified that the amounts of transferred data decrease with
increasing emax in this phase. This has prevailed in most samples selected for the experiment.
It was worth mentioning that the amount of the transferred original data between the source
and destination was very low by the continuous processing, in the noise cancellation model.
The obtained results of data reduction were plotted against the specific emax values through
cancellation stage in Figure 6 Furthermore, DDPM reinforced the performance quality of the
designated network by 19.49%; this raised the creditability of the sensory network. The
performance results mentioned in Table 5 below, point out that there is a proportional
relationship between data reduction and performance quality, as MAPE increases as the
RMSE decreases. It is noticed that the value of MAPE appears 19.4 when RMSEwas 0.240 at
emax was 0.25, while it goes up to ∼19.5 when the value of RMSE dropped to 0.201 with
increasing emax to 1.0. This confirms that the quality depends on data reduction. Additionally,
the consumption in energywas directly correlated to the data reduction, where decreasing the
data transmission and filtering it significantly save energy. Hence, the proposed model
significantly reduced energy consumption and improved sensory network performance.
Based on the above, DDPM managed to decrease the amount of the transferred data and
improved the performance of the sensory network and contributed efficient-energy, hence
raised the quality of the sensory network and prolonged the default lifetime of a sensor node
in WSN.

0.18

0.2

0.22

0.24

0.25 0.5 0.75 1

RMSE 

e_max 

Noise Cancella�on  model

RMSE

emax Signals acquisition Noise Cancellation
RMSE MAPE R2 MAE RMSE MAPE R2 MAE

0.25 0.588 19.357 0.218 15.7 0.240 19.4 0.769 16.6
0.50 0.589 19.3568 0.419 15.8 0.229 19.45 0.858 17.4
0.75 0.590 19.3569 0.520 15.9 0.212 19.47 0.905 18.4
1.0 0.592 19.357 0.626 16.0 0.201 19.49 0.974 18.9

Figure 6.
Representation of
RMSE values vs. emax

values.

Table 5.
Evaluation of the
integrated filter
performance through
various metrics.

ACI
19,1/2

58



Table 5 points out that the best paradigms are the ones that provide the lower RMSE and
highest R2 values, also there is relative inversion relationship between data reduction and
performance quality, where the valuesMAPE andMAE increase as the RMSE decreases. It is
noticed that the growing value of R2 to 97.8% and low RMSE to 0.20 when emax increased to
1.0, in the phase of noise cancellation. Also, the values ofMAE andMAPE continuously go up
when RMSE dropped throughout increasing emax level. This confirmed that quality based on
data reduction. It can be said that DDPM managed to decrease the rate of data transmission
that improved the performance of the sensory network and contributed efficient-energy;
hence raised the quality of the sensory network and prolonged the default lifetime of a sensor
node inWSN. Also, it accomplished rich-ratio in saving energy getting close to the prediction
accuracy ratio.

Compared to the state-of-the-art methods, the proposed DDPM decreased data
transmission in the cancellation phase to ∼20%, while other researchers [12] have attained
a reduction in data transfer up to 35% when emax was 1.0. On another hand, the proposed
DDRMachieved∼96.6% transmission reduction, while AM-DR approach [13] reached∼95%
when emaxwas 0.5. Also, DDRM accomplished ∼96% transmission reduction when emaxwas
1.0, while other investigators [12] and [8] attained ∼95% at the same level. DDPM reinforced
the performance quality of the designated network by 19.49%; this raised the creditability of
the sensory network. It can be said that the proposed DDPM has high predictability for
upcoming sensor readings, Figure 7.

4.4 Energy-consumption estimation
The communication energy cost (Ecomm) is a primary key in the estimation of energy
consumption. It can be estimated by the operational energy cost of the operational modes
(listening, transmission, reception, and sleeping) through the deployment cycle. So,Ecomm can
be calculated by:

1. The listening energy (Elisten): refers to the consumed energy when the sensor is active,
but not receiving or sending packets.

Elisten ¼ Ilisten 3 Tlisten (19)

2. The transmission energy (Et): denotes to the energy consumed during the
transmission of packets in active mode. (Et) can be expressed as:

Et ¼ P 3 It 3 Pl 3 Ttb (20)

y = -0.0096x + 0.9715 
R² = 0.9742 93.00%

93.50%

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

DDPM         AM-DR          HLMS            LMS 

Linear (Data

Figure 7.
Percentages of data

transmission reduction
using different

approaches.
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3. The reception energy (Er): indicates to the consumed energy when receiving packets
throughout the active state. Er can be stated by:

Er ¼ P 3 Ir 3 P1 3 Trb (21)

4. The sleep time (Tslp): demonstrates the energy cost over a duration that has not done
within it any operation throughout deployment round.

Eslp ¼ Islp 3 Tslp (22)

where Ilisten is the current consumption of the energy in the idle mode and Tlisten is the
elapsed time in each epoch by the sensor in listening without sampling or communication.
P is a number of the sent bit packets; It is the current consumption of the energy in the
transmission mode. PL is the bit length of the packet to be transmitted and Ttb is the
transmission time of a bit packet. Ir is the current consumption in a reception mode; PL is
the bit length of the packet to be received along, where a node can receive more than one
packet during one sampling period and Trb is the reception time of a bit packet. Islp is the
current consumption of the energy in the sleep mode and Tslp is the elapsed time in sleep
mode within an epoch.

- It can be said that the total energy consumed through communication (Ecomm) or
operational energy needed for the operational modes can be calculated as:

Ecomm ¼ Elisten þ Et þ Er þ Eslp (23)

- Hence, The energy consumption cost (Econsumption) of the overall system was
calculated by energy estimations during communication round and sleep schedule
throughout the duty cycle, as:

Econsumption ¼ P 3 Nactive 3 Ecomm 3 Tcomm þ Nsleep 3 Esleep 3 Tsleep (24)

where P is a total number of the sent bit packets in the active mode; Nactive and Nsleep are
the nodes numbers of active and sleep took by the sensor, respectively; Eactive is total the
consumed energy in the communication; Tactive and Tsleep are the elapsed times in active
and sleep modes, respectively.
As above, during the practical performance, the total energy conservation was estimated

in each the round, then in the total duty cycle (see Table 6), as follows:

1. Consumed Energy for the mote (sensor node) in the elapsed epoch:

Eðactive; slpÞ ¼ P 3 P1 3 Voltage 3 ðElapsed epoch length ÷ 3600Þ

2. Energy-conservation for the mote:

Econserve ¼ Initial voltage� Eðactive; slpÞ ÷ Initial voltage%; Then

3. Energy-saving in the deployment rounds, is calculated by:

Esave ¼
XN
i¼1

Econserve ÷ N%

where E(active, slp) is the consumption energy through either active modes or sleep mode; P
is a number of the sent bit packets; PL is the size of the packet estimated by bit, N is the
total numbers of the sensor nodes in the round.
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ROUND (4)

Cluster (1) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Active Active Sleep
Interconnection communicate communicate communicate communicate
Elapsed time 3 21 2 15 2415
Voltage 2.69 2.68 2.69 2.65 2.69
Consumption-Energy 0.009 0.063 0.006 0.044 0.0005
Energy-conservation 0.996 0.976 0.997 0.983 0.999
Cluster (2) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Active Active Active
Interconnection communicate communicate communicate communicate communicate
Elapsed time 15 9 15 6 9
Voltage 2.68 2.68 2.77 2.67 2.68
Consumption-Energy 0.045 0.0267 0.046 0.0178 0.0266
Energy-conservation 0.983 0.990 0.983 0.993 0.990
Cluster (3) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Sleep Active Active
Interconnection communicate communicate communicate communicate
Elapsed time 30 16 3113 8 2
Voltage 2.65 2.69 2.69 2.62 2.52
Consumption-Energy 0.088 0.047 0.00069 0.023 0.0056
Energy-conservation 0.967 0.982 0.9997 0.991 0.997
Cluster (4) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Active Active Active
Interconnection communicate communicate communicate communicate communicate
Elapsed time 2 2 7 3 3
Voltage 2.69 2.90 2.69 2.65 2.69
Consumption-Energy 0.006 0.007 0.020 0.009 0.009
Energy-conservation 0.996 0.997 0.992 0.996 0.996
Cluster (5) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Active Active Sleep
Interconnection communicate communicate communicate communicate
Elapsed time 2 22 300 10 3602
Voltage 2.69 1.97 2.08 2.69 2.69
Consumption-Energy 0.00597 0.048 0.693 0.029 0.00080
Energy-conservation 0.997 0.975 0.667 0.988 0.9997
Cluster (6) Si1 Si2 Si3 Si4 Si5
Activation-mode Sleep Active Sleep Active Active
Interconnection communicate communicate communicate
Elapsed time 830 46 3638 149 510
Voltage 2.68 2.78 2.47 2.128 2.46
Consumption-Energy 0.00018 0.142 0.00074 0.352 1.39
Energy-conservation 0.999 0.948 0.999 0.834 0.433
Cluster (7) Si1 Si2 Si3 Si4 Si5
Activation-mode Sleep Active Active Active Sleep
Interconnection communicate communicate communicate
Elapsed time 1512 467 526 36 3630
Voltage 2.167 2.65 2.15 2.56 2.49
Consumption-Energy 0.00027 1.375 1.256 0.1024 0.00075
Energy-conservation 0.999 0.481 0.415 0.96 0.999
Cluster (8) Si1 Si2 Si3 Si4 Si5
Activation-mode Active Active Active Active Active
Interconnection communicate communicate communicate communicate communicate
Elapsed time 253 552 357 252 4
Voltage 2.35 2.32 2.33 2.25 2.38

(continued )

Table 6.
Estimation of energy
cost was recorded by
the clustering sensors
for assigning a ratio of

energy-saving
throughout round 4.
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5. Conclusion
In this study, a proposed distributed data prediction model (DDPM) was applied to a real-
world temperature dataset. These real set suffer from noisy measurements and often lost
values. The model was applied to predict the upcoming measurements and recover the
missing readings of sensor that resulted from diffusion faults and sleep schedule. Then, it
filtered these measurements to refine the transferred signals aimed to significantly energy
efficient. The proposed model was built upon a combination of two adaptive filters are RLS
and FIR at both source and destination levels. It aimed to get rid of the noise associating to
signal values. The filtering was implemented through two phases are, signals acquisition
phase and noise cancellation phase. The results clarified that the data generation algorithm
recovered ∼99% of lost data in observation and deployment fields. The distributed filtering
algorithm had reduced data transmission to 96.6% when emax was 0.5, while retained about
96%with a deviation of the picked real-datasets when emaxwas 1.0, thus it provided∼95% of
energy throughout the selected sample. Both prediction and filtering processes significantly
reduced the volume of transmitted signals, minimized the energy consumption, improved
sensory network performance and ensured high reliability estimated by 19% for the designed
WSN. In future, experimental efforts will extend tomaintain the confidentiality of the sensory
network based upon data aggregation.
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