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Abstract
Classifying moving objects in video sequences has been extensively studied, yet it is still an ongoing
problem. In this paper, we propose to solve moving objects classification problem via an extended version of
two-dimensional principal component analysis (2DPCA), named as category-wise 2DPCA (CW2DPCA). A key
component of the CW2DPCA is to independently construct optimal projection matrices from object-specific
training datasets and produce category-wise feature spaces, wherein each feature space uniquely captures the
invariant characteristics of the underlying intra-category samples. Consequently, on one hand, CW2DPCA
enables early separation among the different object categories and, on the other hand, extracts effective
discriminative features for representing both training datasets and test objects samples in the classification
model, which is a nearest neighbor classifier. For ease of exposition, we consider human/vehicle classification,
although the proposed CW2DPCA-based classification framework can be easily generalized to handle multiple
objects classification. The experimental results prove the effectiveness of CW2DPCA features in discriminating
between humans and vehicles in two publicly available video datasets.
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1. Introduction
Moving object classification (MOC) in video sequences is an active research area due to its
potential in providing more capabilities to wide range of vision-based systems including
video surveillance, traffic monitoring and analysis, and security applications. It aims to
correctly assign moving objects in dynamic scenes to their respective categories and in turn
extract detailed information that helps in understanding objects’ behaviors and assessing
events within the observed areas of interest. Despite its significant importance, MOC remains

ACI
18,1/2

136

© Falah Alsaqre and Osama Almathkour. Published in Applied Computing and Informatics. Published
by Emerald Publishing Limited. This article is published under the Creative Commons Attribution
(CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this
article (for both commercial and non-commercial purposes), subject to full attribution to the original
publication and authors. The full terms of this license may be seen at http://creativecommons.org/
licences/by/4.0/legalcode

Publishers note: The publisher wishes to inform readers that the article “Moving objects
classification via category-wise two-dimensional principal component analysis” was originally
published by the previous publisher of Applied Computing and Informatics and the pagination of this
article has been subsequently changed. There has been no change to the content of the article. This
change was necessary for the journal to transition from the previous publisher to the new one. The
publisher sincerely apologises for any inconvenience caused. To access and cite this article, please use
Alsaqre, F., Almathkour, O. (2022), “Moving objects classification via category-wise two-dimensional
principal component analysis”, Applied Computing and Informatics. Vol. 18 No. 1/2, pp. 136-150.
The original publication date for this paper was 19/02/2019.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2210-8327.htm

Received 8 September 2018
Revised 7 November 2018
Accepted 17 February 2019

Applied Computing and
Informatics
Vol. 18 No. 1/2, 2022
pp. 136-150
Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2210-8327
DOI 10.1016/j.aci.2019.02.001

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1016/j.aci.2019.02.001


one of the challenging topics in computer vision, especially for outdoor vision-based systems.
The primary obstacles of objects classification lie in different inevitable factors such as
uncontrollability of outdoor conditions and complexity of background scenes. Furthermore,
moving objects that often appear in the field of view are humans, vehicles, motorcycles, and
bicycles. As these objectsmove, their appearances andmotions can vary drastically, bringing
further difficulties to the classification task.

There have been various existing methods for classifying moving objects in video
sequences. One of the important problems in these methods is the differentiation between
dynamic objects and background scenes. There are basically two approaches towards this
problem. One is to apply a class-specific detector (e.g., human [1], car [2]) at each frame
location. However, besides the lack in their generalizability, the application of such detectors
is computationally intensive and inadequate for low resolution video sequences. The other is
to perform object segmentation prior to classification process. As opposed to applying class-
specific detectors, the vast majority ofMOCmethods assuming stationary camera, and hence
benefiting from background modelling techniques, mainly adaptive background subtraction
(BS) [3] andGaussianmixturemodel (GMM) [4] to segmentmultiple objects regardless of their
types. Note that, these techniques are still not fully satisfactory in terms of performance and
accuracy, but, so far, no appropriate alternatives are available [5]. In this work, we follow the
latter approach. More specifically, we segment moving objects by means of adaptive BS.

As common to all prior relevant works, after segmenting moving object, the standard
scheme for classification consists of firstly performing features extraction to identify
descriptors/signatures that properly characterize both individual object and predefined class
to which the object belongs. Secondly, each object can be assigned to its most likely category
by applying classification model(s). It is natural that the carried-out works vary greatly in
terms of targeted moving objects, types and numbers of exploited features, and employed
classification models. Besides, the amounts and distributions of processed video sequences
differ considerably. As such, there are substantial differences among the reported
classification performances, impeding meaningful quantitative evaluation.

In general, available MOC methods can be grouped according to the different features by
which the moving objects are described. Regularly used features, individually or in
combination, include shape, motion, and texture features.

In shape-based methods, object geometrical properties (dispersedness, silhouette, aspect
ratio, area, etc.) are utilized as crucial features for classification. An early example is the work
of Lipton et al. [6], which uses dispersedness as a classificationmetric to discriminate between
humans and vehicles. Silhouette-based classification is reported in [7], where a current
silhouette is matchedwith a set of prelabeled silhouettes by distance function. Lin andWei [8]
made use of height/width ratio to specify object category according to predefined thresholds.
Often it does not suffice to exploit a single shape feature for classifying different object types.
For instance, dispersednessmay lead tomisclassify human group as a vehicle or vice versa. A
straightforward alternative is to use amixture of shape features. For example, Collins et al. [3]
adopted dispersedness, aspect ratio, area, and zoom factor to train a neural network (NN)
classifier for categorizing moving objects. The effectiveness of various shape features in
conjunction with NN, support vector machine (SVM), and support vector data description
(SVDD) are investigated byHota et al. [9]. However, notwithstanding their simplicity and ease
of implementation, shape-based methods unable to accommodate the diverse variabilities in
object appearance.

Motion-based methods use temporal information to characterize either entire object or
local distinctive patterns. An interesting motion cue is the repetitive movement exhibited by
non-rigid articulated objects. In this regard, Lipton [10] considered residual flow as ameasure
of both rigidity and periodicity of dynamic objects. Cutler and Davis [11] detected and
characterized object periodic movement via self-similarity based time-frequency analysis.
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In [12], Javed and Shah established recurrent motion image (RMI) to encode the recurrent
motion of object parts based on the recovered silhouette changes in consecutive frames. Later,
Yogameena et al. [13] and Landabaso et al. [14] followed a similar approach, but replaced
silhouette with star skeleton and blob, respectively. Conspicuously, these methods rely
heavily upon repetitive motion, and therefore cannot be applied when dynamic objects
performing complex and or unconstrained movements. Yet, some methods focused on
classifying events into the category of humans or vehicles using classification models
(e.g., AdaBoost network [15], Bayesian classifier [16]) built on training data containing labeled
trajectories. Definitely, this sort of classification is only applicable to situations where the
moving objects tend to generate specific trajectories information.

A group of methods attempts to solve classification problem by benefiting from the
functional characteristics of objects’ geometrical properties and motion information in a
complementary manner. Of these, Zhou and Aggarwal [17] showed that the variances of
motion direction yield a good performance in classifying humans and vehicles meanwhile the
variances of shape compactness well discriminate human from human group; in doing so,
they used K-nearest neighbor (KNN) classifier. Zhaoxiang et al. [18] introduced unsupervised
framework to classify human, vehicle, and bicycle, using 5D feature vector formed from
shape and motion descriptors (size, compactness, area, velocity, and parameterized angle)
coupled with K-means clustering and decision level fusion. Bose and Grimson [19]
distinguished between humans and vehicles using a discriminative SVM combined with soft
margin and Gaussian kernel. They considered mutual information between candidate
features and labeled dataset as scoring criteria to select the informative features and group
them into scene-invariant (orientation, variation in area, and percentage occupancy) and
scene-specific (image coordinates, motion direction speed, area, and aspect ratio). However,
many drawbacks, mainly attributed to instability of objects features among various scenes,
limit the application of this group of methods [20].

Texture features have also been exploited for MOC due to their ability to encode various
types of visual informationwithin object region. Zhang et al. [21] proposed to applyAdaboost
learning algorithm with multi-block local binary pattern and error correcting output code to
categorize moving objects. In the work by Liang and Juang [22], local shape features and
histograms of orientated gradients (HOGs) are adopted to train hierarchical SVM classifier
for differentiating between human, car, motorcycle, and bicycle from their side-view imagery.
For more realistic scenarios, texture features are also combined with shape and/or motion
features. In this way, Miller et al. [23] classified humans and vehicles with a linear SVMmodel
using 9D feature vector contains eight dimensions of edge histograms and one dimension of
aspect ratio. Longbin et al. [24] also tackled human/vehicle classification problem. In their
work, object size, location, and velocity are incorporated with the differences between its
HOGs calculated in consecutive frames, and the classification task is posed as a MaximumA
Posterior problem. Gurwicz et al. [25] considered a broad range of features such as luminance
asymmetry, 2D moments, cumulants, and morphological properties. They employed five
classification techniques (SVM, NN, Bayesian network, decision tree, and KNN) to classify
body organs, human, human group, bag, and clutter. Civelek and Yazici [26] combined speed
up robust features (SURF) and shape features (aspect ratio, blob ratio, dispersedness, and
compactness) in cascade mode to classify human, human group, and vehicle via KNN
classifier. Nevertheless, one of the persistent drawbacks with texture-based methods and
their combined use is that they require extensive training datasets, which is impractical.
Further, common to all of them is the assumption that both training datasets and testing
exemplars are gathered from the same video data, which limits their generalization to new
video sequences and classes.

Quite obviously, none of the existingMOCmethods can be regarded as a prevailing one or
entirely satisfactory. It is therefore necessary to advocate for a different strategy through
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which better solution to MOC problems can be attended. Towards this, we propose to
leverage the invariant characteristics of object type to remedy as much of the deficiencies as
possible. Indeed, an effective approach to capture object invariant characteristics is to use
principal component analysis (PCA) [27], which is extensively exploited in face recognition to
generate Eigenfaces as compact representations of face images in a lower-dimensional space.
In fact, inspired by the Eigenfaces technique, a few attempts have been made to classify one-
category object such as pedestrian [28] and vehicle [29]. In this paper, we revisit and extend
the application of PCA to multiple objects classification, specifically its 2D version (2DPCA)
[30], which, as the name implies, directly deals with 2D images instead of 1D vectorized
images. Despite its simplicity, 2DPCA leads to significant improvement in classification
performance over traditional PCA, since it, in much lower dimensional representation,
effectively preserves structural relation among dataset samples and allows to include more
spatial information in produced features.

Most importantly, our application of 2DPCA in MOC differs significantly from its
standard application in face recognition, in which 2DPCA is used to map the whole face data
(complete set of labeled face images belong to certain individuals/classes) from original space
into feature space. In contrast, we utilize 2DPCA in a more generalized manner by applying it
independently to object-specific training datasets to generate category-wise feature spaces
such that each feature space uniquely captures the invariant characteristics of the underlying
object category. That is, by considering each training dataset covers a sufficient range of the
object appearance conditions positioned on a uniform background, the retained features
convey the most energy of the training samples and some useful local information.
Consequently, category-wise 2DPCA (CW2DPCA) not only enables early separation between
the different object categories, but also provides effective discriminative representations of
both training datasets and test samples to the classificationmodel. In practice, the established
classification framework exhibits strong resistant to the variability in objects appearance
and, in addition, it is inherently insensitive to objects movement. Note that, the presented
framework is explicitly designed to classify moving objects without exploiting tracking
information. Also note that, while our MOC method can be used to solve almost any
multiclass classification problem, however, the formulations and conducted experiments are
confined to human/vehicle classification.

The remainder of this paper is structured as follows. Section 2 reviews the application of
PCA and 2DPCA in face recognition. Details of the proposed MOC method are provided in
Section 3. Experimental results are presented in Section 4; and finally, Section 5 concludes
the paper.

2. Review of PCA and 2DPCA
In this section, we will briefly describe the procedures in PCA-based and 2DPCA-based face
recognition methods.

2.1 Principal component analysis
The standard procedure in PCA-based face recognition methods is to represent 2D face
images as 1D vectors in image space and project these vectors over a small set of principal
components (PCs) to extract the most expressive features while simultaneously prune
irrelevant information. And these PCs are indeed the leading eigenvectors of the input images

covariance matrix. Let A ¼ fAigNi¼1; Ai ∈ℝp3q; be a training set of N face images

exclusively partitioned into classes of individuals, and let Λ ¼ faigNi¼1; ai ∈ℝpq; be a set

obtained by vectorizing each image ofA. AssumeP ¼ fai−agNi¼1;wherea denotes themean

vector ofΛ, then the covariance matrix ofΛ is defined asC ¼ PPT
∈ℝpq3pq:Due to the high
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dimensionality of image vector space and hence the extreme difficulty in computing C, PCA

is very often solved via the eigen-decomposition of the matrix L ¼ PTP ∈ℝN3N [31].

Suppose thatE ¼ ½e1; . . . ; ed�∈ℝN3d computed as the eigenvectors ofL corresponding to

the first d biggest eigenvalues, then X ¼ PE ∈ℝpq3d gives the PCs of Λ. In other words,

columns ofX ¼ fx igdi¼1 are the eigenfaces spanning d-dimensional subspace (facespace) of
image vector space. Once the facespace is established, the training images and a given test
image, a ∈ℝpq, are then projected onto this subspace to produce the weight vectors

ZΛ ¼ XTP ∈ℝd3N and Z a ¼ XTða −aÞ∈ℝd, respectively. By measuring the similarity
between Z a and each column of ZΛ, a can be assigned to its relevant class.

2.2 2D principal component analysis
As opposed to PCA, 2DPCA directly transforms a training set of 2D face images into a set of
training featurematriceswithout vectorization process. Essentially, 2DPCAseeks to construct
an optimal projection matrix whose column vectors are the optimal projection axes that
maximize total scatter of projected images. In fact, it is proven that these axes are basically the
principal eigenvectors of image scattermatrix corresponding to the largest eigenvalues [30]. In

particular, consider the set A, and let A be the mean image of all training samples. The total

scatter matrix of A is defined as S ¼ 1=N
PN
i¼1

ðAi −AÞTðAi −AÞ; S ∈ℝq3q. It then follows,

by application of eigen-decomposition to S matrix, that the eigenvectors associated with the

first k eigenvalues of S form the optimal projection matrixU opt ¼ ½u1; . . . ; uk�∈ℝq3k. The
2DPCA transformation is then applied to each training image, resulting in a set of training

featurematricesY ¼ fY igNi¼1;whereY i ¼ AiU opt ∈ℝp3k. For a given test imageT ∈ℝp3q,

its feature matrix Y T ¼ TU opt ∈ℝp3k is compared to each training feature matrix and is
ascribed to the class whose training samples yield highest similarity measure.

3. The proposed method
The framework of the proposed MOC method is illustrated in Figure 1. Given a video
sequence, the objects segmentation is first conducted to segregate foreground objects from
the background of each observed frame using adaptive BS. As next step, feature extraction is
carried out using CW2DPCA. In the training phase, since our focus here is on classifying two
categories of objects (humans and vehicles), two disjoint training datasets are used, each
comprises a relatively small number of object images per category with diverse object
appearance conditions and uniform background. 2DPCA is then applied to each training
dataset, leading to construct two category-wise optimal projection matrices. It follows that
two sets of training feature matrices are derived, each capturing the underlying invariant
characteristics of its respective object. During the testing phase, for each test object segment,
two test feature matrices are generated, each by one of the optimal projection matrices. Such
representation allows for facilitating the subsequent classification by only returning the
minimum distances between each of the test feature matrices and its relevant set of training
feature matrices (i.e., obtained by the same optimal projection matrix), thereby the test object
image is assigned to its category. To this end, a nearest neighbor classifier based on
Euclidean distance is employed.

3.1 Dynamic objects segmentation
Despite the existence of many sophisticated segmentation techniques [32,33], BS still, by far,
occupies a prime position in this context because of its algorithmic simplicity and low
computational expense. But on the other hand, BS is susceptible to environmental conditions
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and subtle variations in background scene. It also fails when background geometry is
modified, for example, a moving object becomes static or vice versa. To circumvent these
issues, a common practice involves the employment of adaptation mechanism to learn
background scene over time [34]. Thusly, the segmentation procedure entails background
scene modelling and maintaining as well as foreground objects detection. With this in mind,
we tackle the segmentation problem by means of adaptive BS.

To do so, we first construct a reference backgroundmodel by averaging a set of successive
background frames void of dynamic objects. We then exploit the concept of exponential
forgetting [35] to recursively update the background scene as follows:

Bn ¼ αF n þ ð1� αÞBn−1; (1)

where α∈ ½0; 1� is a learning constant, typically set to 0.05, and both Bn and F n are the
background model and observed frame at time instant n, respectively. In order to reveal
object-like regions, the difference map between F n and Bn is calculated and thresholded,
resulting in a binary image BI n as

BI n ¼
�
1 if jF n � Bnj > Θn

0 otherwise:
(2)

Here, Θn is a dynamic threshold value, empirically defined as Θn ¼ 20þ 2:5σðjF n −BnjÞ,
where σ stands for standard deviation. The BI n image is further processed by standardized
binary morphological operations to filter out small noises and to alleviate possible false
detections, yielding final mask of moving objects BF n; examples of F n and BF n images are
given in Figure 2. After that, the foreground objects are segregated by performing pixel-wise
multiplication betweenF n andBF n. As with most segmentation techniques, we extract a set
of segments corresponding to the bounding boxes of moving objects. It is typical that
different objects return different segments sizes, so these segments are normalized to fit the

Figure 1.
The framework of

proposed MOC
method.
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height and width of training samples. Therefore, at each n, the segmentation result is a set,
denoted as On ¼ fQnrgwr¼1; Qnr ∈ℝp3q, composed of w equal size objects segments have
uniform background. And of course, when no object exists in the scene,On ¼ ffg.

3.2 Category-Wise 2DPCA
Classical 2DPCA, by nature, deals with a single-object classification, where the training
samples are partitioned into a number of pattern classes, so that all classes are equally
contributed to the computation of total scatter matrix. Unfortunately, this is not the case
in multiple objects scenario, because directly applying 2DPCA to training dataset
containing samples from more than one object type leads to potential ambiguity in the
definition of total scatter, since different object types have different structural and spatial
properties. Alternatively, we introduce CW2DPCA for multiple objects’ classification, in
which the scatter matrices are defined from the category perspective to clearly quantify
the typical correlation between intra-category samples and, in turn, ensure that each
object category is uniquely characterized by its own invariant features. Therefore, the
main purpose of CW2DPCA is to transform each object-specific dataset from image space
to feature space, through which the preserved information in transformed space is well
discriminative while being separable prior to the classification task. Without loss of
generality, we address a simplified two-object classification problem. Specifically, given a
segmented object in a video sequence, the goal is to coarsely categorize it into either
human or vehicle. We hence use two disjoint training datasets, one constructed from
human images and the other from vehicle images, to learn optimal projection for each
object separately.

Let H ¼ fH igNi¼1; H i ∈ℝp3q, and V ¼ fV igNi¼1; V i ∈ℝp3q, be the human and vehicle
training datasets, respectively, whereN is the number of samples in each dataset. Since, here,
the objective is to obtain two category-wise optimal projection matrices, each of which

maximizes the scatter within its respective intra-category samples, the scatter matrices SH

and SV of H and V , respectively, are individually computed as

SH ¼ 1

N

XN
i¼1

ðH i �H ÞTðH i �H Þ; (3)

Figure 2.
(Top) Three frames
from PETS2001 video
sequence [36]. (Bottom)
Resulted moving
objects masks after
performing adaptive
BS and morphological
operations.
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S
V ¼ 1

N

XN
i¼1

ðV i �V ÞTðV i �V Þ (4)

Here, H and V denote the mean images of H and V , respectively, and both SH and
SV ∈ℝq3q. By computing the eigen-decomposition of each scatter matrix, we can form two

optimal projection matrices U H
opt and U V

opt such that U H
opt ¼ ½h1; . . . ; hk�∈ℝq3k and

U V
opt ¼ ½v1; . . . ; vk�∈ℝq3k, where fhiji ¼ 1; . . . ; kgand fviji ¼ 1; . . . ; kgare, respectively,

sets of the first kdominant eigenvectors ofSH andSV . So, accordingly, we derive two distinct

sets of feature matrices denoted by Y H and Y Vfor the training images of H and V ,
respectively, as follows:

Y H ¼ �
Y H

i

�
i¼1 withY

H
i ¼ H iU

H
opt ∈ℝp3k; (5)

Y V ¼ �
Y V

i

�
i¼1 withY

V
i ¼ V iU

V
opt ∈ℝp3k (6)

As we have already defined two feature spaces (one per category), it then becomes natural to
base classification task on the fact that feature representation of a test sample from a certain
category lies close only to that of training data from the same category. To proceed with this,
we first need to map the test object image onto each feature space, and then by using NN
classifier, the object membership can be specified, as will be detailed in subsequent section.

3.3 Dynamic objects classification
Assume thatOnr is a test object image segmented at time instant n, and thatOH

nr ∈ℝp3k and

OV
nr ∈ℝp3k are two feature matrices for Onr, where O

H
nr ¼ OnrU

H
opt and O

V
nr ¼ OnrU

V
opt. On

the other words, OH
nr and OV

nr are the projections of Onr into the feature spaces defined by

U H
opt and U V

opt, respectively. Thus, the evidence for Onr being belonged to either of the two

categories is simply the highest similarity, within each feature space, between Onr feature
matrix and the set of training feature matrices. Towards this end, we make use of NN
classifier based on Euclidean distance in feature space.

More formally, we first compute the minimum distance between OH
nr and Y H as well as

between OV
nr and Y V as below:

DH
nr ¼ min

i

���OH
nr � Y H

i

���; i ¼ 1; � � � ; N (7)

DV
nr ¼ min

i

���OV
nr � Y V

i

���; i ¼ 1; � � � ; N (8)

where k$k refers to the Euclidean norm. It follows by returning Dnr ¼ minðDH
nr; D

V
nrÞ that the

category index associated with the assigned minimum distance to Dnr is the category
membership of Onr.

4. Experimental results
To evaluate the effectiveness of the proposed MOC method, we conducted experiments on
two publicly available video datasets: PETS2000 and PETS2001 [36]. It is important to point
out that we can only compare the results of the presented CW2DPCA method against those
provided by category-wise PCA (CWPCA) methods, which, however, not exist as yet in
literature. For fairness, we have compared our method with an extended version of the PCA-
based vehicle classification framework introduced in [29], which initially structured to
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classify vehicles at finer-level, and only a set of training vehicle images was employed to
generate the PCs (eigenvehicles). We extended it to the CWPCA by following the similar
procedure as in CW2DPCAwith exception that the formulation ismade on vectorized version
of input images.

Before giving the classification results, we will first introduce the used training datasets
for constructing category-wise feature spaces, then we will illustrate the role of feature
extraction within both CW2DPCA and CWPCA.

4.1 Training datasets
In order to define the bases of the category-wise feature spaces, we constructed two
separate training datasets, one comprising human samples and the other of vehicle
samples, each one 200 samples long, spanning a sufficient range of object appearance
conditions. The human and vehicle samples are manually segmented from the images of
Penn-Fudan database [37] and Graz-02 dataset [38], respectively. The background intensity
and size of each sample are respectively set to 255 and 503 30 pixels. Figure 3 shows five
samples from each dataset.

4.2 The role of feature extraction
We applied CW2DPCA to transform input images into feature matrices. Here, according to

the CW2DPCA formulation, the size of scatter matrices SH and SV is 30 3 30, and

consequently it is quite easy to form the optimal projectionmatricesU H
opt andU

V
opt (and hence

the featurematrices). For instance, when considering k515, bothU H
opt andU

V
opt ∈ℝ30315, and

the two sets of training feature matrices receive the forms Y H ¼ fY H
i g

200

i¼1 and

Y V ¼ fY V
i g

200

i¼1, where Y H
i and Y V

i ∈ℝ50315, whereas the projected test feature matrices

OH
nr andO

V
nr ∈ℝ50315. Although the feature matrices are relatively compact, they convey the

most energy of the original images [30] and preserve some local details which may useful in
distinguishing between different objects. That is to say, these feature matrices provide

Figure 3.
First row: Five samples
from human dataset.
Second row: Five
samples from vehicle
dataset.
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compact and meaningful descriptions to the content of input images while performing
classification. As evidence of this, Figure 4 depicts the reconstructed images of the first
sample in each row of Figure 3, when k51, 3, 6, 9, 12, and 15. One can observe that the first few
principal eigenvectors are sufficient enough to produce a good approximation to the original
samples. For comparison, Figure 4 also depicts the reconstructed images by CWPCA
(eigenhumans and eigenvehicles) as the number of PCs d set to 10, 20, 30, 40, 50, and 60. As
expected, CWPCA yields much lower reconstruction quality compared to CW2DPCA.

4.3 Experiments on PETS2000 and PETS2001 video datasets
PETS2000 and PETS2001 are surveillance type of video sequences containing video
objects with diverse appearance conditions and motion patterns. These sequences also
have some challenging factors such as illumination variations, complex background, and
background modifications. PETS2000 consists of 1452 frames with resolution of 4803 640
pixels (height 3 width), containing only humans and vehicles. Although PETS2001
composed of 3064 frames with size 5763768 pixels, we considered only the first 2550
frames in which the moving objects are solely humans and vehicles. In our experiments, the
original frames of PETS2000 and PETS2001 are converted to gray scale and normalized to
240 3 320 pixels.

Again, in this paper, CW2DPCA and CWPCA methods are used for feature extraction to
distinguish between humans and vehicles. Note that, since in general the number of principal
eigenvectors/components to be retained is user-defined, we selected values ranging from 1 to
15 in an incremental manner, so that for each method, 15 test runs have been performed on
each video sequence.

In the segmentation procedure, we picked up the first 30 and 170 frames to infer the
background scene of PETS2000 and PETS2001, respectively, and then updated using (1). It is
worthwhile mentioning that invalid objects segments are excluded from the subsequent
classifications. These segments mostly correspond to poorly/erroneously segmented objects
and to dynamically occluded objects. Unfortunately, such segmentation results are almost
inevitable unless there are user interactions, which, out of scope of this paper. Resultantly, at
the end of each test run, the total number of valid segmented objects within PETS2000 is
2028, of which 1302 are humans and 726 vehicles, whereas within PETS2001, it is 2764, of
which 1983 are humans and 781 vehicles. Notice, furthermore, that the background intensity
and size of each segment are set identically to those of training samples.

In the following, we demonstrate the performance of CW2DPCA and compare it to
CWPCA. Figures 5 and 6 separately display some examples of correctly classified humans
and vehicles in PETS2000 and PETS2001 by CW2DPCA method.

Figures 7 and 8 show the classification accuracies for the moving objects within
PETS2000 and PETS2001, respectively, when using CW2DPCA and CWPCA. As observed
in Figure 7, the lowest classification accuracies produced by CW2DPCA are 84.10% for
humans, 91.18% for vehicles, and 86.83% for total objects (humans and vehicles)

Figure 4.
First row: Two groups

of reconstructed
images by CW2DPCA;
in each group, from left

to right: k51; k53;
k56; k59; k512; k515.

Second row: Two
groups of

reconstructed images
by CWPCA, in each
group, from left to
right: d510; d520;

d530; d540;
d550; d560.
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when k51, 2, and 1, respectively. Figure 8 also shows that the lowest classification accuracies
yielded by CW2DPCA are 78.67% for humans, 91.55% for vehicles, and 82.31% for total
objects when k51. Both of these results indicating that CW2DPCA with a few principal
eigenvectors has a strong ability to classify moving objects. Furthermore, it is observed in
Figure 7 that the proposed method reached highest classification accuracies of 92.70% for
humans, 96.69% for vehicles, and 93.78% for total objects when k55, 8, and 7, respectively.
Also, according to Figure 8, the highest classification accuracies achieved with CW2DPCA
are 94.35% for humans, 97.95% for vehicles, and 94.79% for total objects when k55, 6, and 5,
respectively. Such results further affirming the effectiveness of the proposed method for
moving objects classification in these challenging video sequences.

As also noted in Figures 7 and 8, CW2DPCA consistently outperforms CWPCA for each
moving object. In Table 1, we report the performance of CW2DPCA and CWPCAmethods in
terms of average classification accuracy. Results fromTable 1 show that CW2DPCAachieves
average classification accuracies surpass those of CWPCA by 10% to 14%.

Although the presented method outperforms CWPCAmethod, mostly benefiting from the
efficient representation of original images by CW2DPCA, but not surprisingly their results
share some general trends. Particularly, the classification accuracies of both methods tend to
increase as the number of principal eigenvectors/components increases. As expected
intuitively, the classification accuracies for vehicles are always higher than those for humans.
This is fundamentally due to the fact that humans are nonrigid highly deformable objects
often appear relatively small within video frames, so the segmentation results may not return
their accurate structures. Further, apart from the segmentation performance, the
misclassification cases are occurred when the moving objects appear too small to support
sufficient features and, in less degree, when their appearances are not well covered in the
datasets.

Eventually, we evaluated the computational efficiency of CW2DPCA and CWPCA
methods, with unoptimizedMATLAB code runs on a laptopwith Intel Core i3, 2.26 GHZ CPU,
and 4GB RAM. Table 2 provides runtime for individual phases of each method in some of the
conducted experiments; more specifically, when both k and d set to 1, 5, 10, and 15. It can be
noted that the training times in both methods are very short, since the sample size and

Figure 6.
Examples of correctly
classified moving
objects in PETS2001.

Figure 5.
Examples of correctly
classified moving
objects in PETS2000.
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dimension of training datasets are relatively small. Even so, CWPCA training times are
slightly longer compared to CW2DPCA. As for segmentation and testing times, CWPCA
method also takes slightly longer times than the CW2DPCA method. Table 2 also clearly
shows that the computational time of each individual phase increases as the number of
principal eigenvectors/components increases. Moreover, both CW2DPCA and CWPCA
methods in their primal forms are able to achieve 8 to 10 fps.

5. Conclusions
In this paper, we have proposed CW2DPCA-based framework for classifying dynamic
objects in video sequences. The basic idea of CW2DPCA is to construct category-wise
optimal projection matrices from object-specific training datasets, and then derive
feature space for each object category. As a result, CW2DPCA ensures early separation
between different object categories and meanwhile produces compact and discriminative
features to characterize training datasets and test objects samples. Unlike other methods,
our classification framework able to accommodate the variability in objects appearance
by the virtue of CW2DPCA, and it is inherently insensitive to objects’ motion patterns.
The experimental results on two challenging video sequences confirm the performance
of the presented framework. Although we have addressed human/vehicle classification

Figure 7.
Classification
accuracies of

CW2DPCA and
CWPCA for (a)

humans, (b) vehicles,
and (c) total objects
within PETS2000.
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Sequence
CW2DPCA CWPCA

Humans Vehicles Total Objects Humans Vehicles Total Objects

PETS2000 91.02 94.97 92.43 78.75 81.35 79.68
PETS2001 90.77 96.58 92.41 76.61 86.23 79.33

k5d

Training Time Segmentation and Testing Time

CW2DPCA CWPCA
PETS2000 (1422 frames) PETS2001 (2380 frames)

CW2DPCA CWPCA CW2DPCA CWPCA

1 0.1128 0.1847 164.5231 167.8043 256.6595 265.3945
5 0.1183 0.1920 165.3460 169.4325 261.2318 270.1269
10 0.1251 0.1975 167.6328 172.4360 266.9264 276.0366
15 0.1302 0.2050 171.9067 177.0871 272.7050 284.0124

Figure 8.
Classification
accuracies of
CW2DPCA and
CWPCA for (a)
humans, (b) vehicles,
and (c) total objects
within PETS2001.

Table 1.
Comparison of the
average classification
accuracy (%) of
CW2DPCA
versus CWPCA.

Table 2.
Computational time (s)
required for each phase
of CW2DPCA and
CWPCA methods.
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in this paper, it is straightforward to extend CW2DPCA to handle multiple objects
classification.
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