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Abstract
The scalability of similarity joins is threatened by the unexpected data characteristic of data skewness. This is
a pervasive problem in scientific data. Due to skewness, the uneven distribution of attributes occurs, and it can
cause a severe load imbalance problem.When database join operations are applied to these datasets, skewness
occurs exponentially. All the algorithms developed to date for the implementation of database joins are highly
skew sensitive. This paper presents a new approach for handling data-skewness in a character- based string
similarity join using the MapReduce framework. In the literature, no such work exists to handle data skewness
in character-based string similarity join, although work for set based string similarity joins exists. Proposed
work has been divided into three stages, and every stage is further divided into mapper and reducer phases,
which are dedicated to a specific task. The first stage is dedicated to finding the length of strings from a dataset.
For valid candidate pair generation, MR-Pass Join framework has been suggested in the second stage. MRFA
concepts are incorporated for string similarity join, which is named as “MRFA-SSJ” (MapReduce Frequency
Adaptive – String Similarity Join) in the third stage which is further divided into four MapReduce phases.
Hence, MRFA-SSJ has been proposed to handle skewness in the string similarity join. The experiments have
been implemented on three different datasets namely: DBLP, Query log and a real dataset of IP addresses &
Cookies by deploying Hadoop framework. The proposed algorithm has been compared with three known
algorithms and it has been noticed that all these algorithms fail when data is highly skewed, whereas our
proposed method handles highly skewed data without any problem. A set-up of the 15-node cluster has been
used in this experiment, andwe are following the Zipf distribution law for the analysis of skewness factor. Also,
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a comparison among existing and proposed techniques has been shown. Existing techniques survived till Zipf
factor 0.5 whereas the proposed algorithm survives up to Zipf factor 1. Hence the proposed algorithm is skew
insensitive and ensures scalability with a reasonable query processing time for string similarity database join.
It also ensures the even distribution of attributes.

Keywords Similarity join, Big data, Hadoop, MapReduce, Data skewness
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1. Introduction
The term “Big Data” [1–10] has turned into a buzzword and is broadly used in both research
and industrial world. Big Data refers to a term which is a blend of the 4V’s, namely Volume,
Variety, Veracity, and Velocity. But now it is evolving with time. It is closely being related to
data integration, which aims at combining the various forms of data from different sources
and provides a consolidated view. Data integration [3,11] can be achieved by using the String
similarity join [2,3], which provides a similar pair of strings from the two-given collection of
strings. The similarity of the two strings can be calculated by using their similarity functions.
There are two types of similarity functions which are used to calculate the similarity viz.:
character-based similarity functions [12–23] and set-based similarity functions [14–18].

1. Character-Based Similarity Functions: These are the functions which are based on the
number of character operations performed, to transform one string into another string.
These are calculated by the Edit Distance (ED) [12–16], which can be referred to as the
minimum number of operations that are needed to transform one string into another.
Operations such as insertion and deletion are performed under the edit distance. For
example: Given r5“Sanskrit” and s5“Sanskirt”. We have ED(r,s)52.

2. Set-Based Similarity Functions: There exist well-known methods of the set-based
similarity function, namely: Dice Similarity [18,19], Jaccard Similarity [18–23] and Cosine
Similarity [15–18]. These similarity measures are given by the following equations:

� Diceðr;sÞ ¼ ð2jr ∩ sj=jrj þ jsjÞ
where Dice(r,s) refers to the Dice similarity that exists between string r and s.

� Jacðr;sÞ ¼ ðjr ∩ sj=jr ∪ sjÞ
where Jac(r,s) refers to the Jaccard similarity that exists between string r and s.

� Cosðr;sÞ ¼ ðjr ∩ sj=√jrj:jsjÞ
where Cos(r,s) refers to the Cosine similarity that exists between string r and s.

For example, given r5“I am cool person” and s5“I am cool”. We have jrj ¼ 4 and jsj ¼ 3,
further jr ∪ sj ¼ 4 and jr ∩ sj ¼ 3. Thus, DICEðr;sÞ ¼ ð6=4Þ, JACðr;sÞ ¼ ð3=4Þ and COS
ðr;sÞ ¼ ð3=√12Þ.

String similarity joins have many real-world applications, e.g., entity resolution, copy
detection, document clustering [19], plagiarism detection and data integration [23].
Traditional algorithms of string similarity joins have memory constraints and hence they
have limited applications when they deal with a large amount of data.

Similarity join is the critical issue of discovering all sets of records from a given set that
have similarity scores more noteworthy than a predefined Similarity limit under a given
similitude work. It can be applied in various applications where it needs to deal with the
progressively immense amount of information; the issue of scaling up the similarity joins is
always gettingmore imperative. Performing Similarity joins on the enormous amount of data
presents two principal difficulties. First, the information can never again fit into the memory
of onemachine, which calls for workload partitioning. Given, the pairwise-comparison nature
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of the issue, dividing data to guarantee load balancing, while at the same time limiting
correspondence cost and redundancy is troublesome. The trouble of load adjusting is
additionally aggravated by the need to deal with various informational indexes with skewed
distributions and high dimensionality. Second, since the number of examinations required
develops quadratically as data increases, methods that require looking at all sets of records
don’t scale well. Along these lines, another test is to filter the candidate pair without
calculating the actual similarity. Designing filters to help a vast class of valuable similarity
function is of incredible and practical significance [23].

Data Skewness [23,24–31] occurs when the computational load is unbalanced among map
tasks or among reducing tasks. Skewness can lead to significantly longer job execution time,
lower cluster throughput, high computation time and high computation cost. Performance of
existing algorithms degrades or not up to the mark due to the presence of data skewness. It is
essential to define the method and overcome this problem for better results. Existing data
techniques causes data skewness during the partitioning which creates the imbalance of data
and data duplication. As well they require a high cost of computation for handling the vast
amount of data. In this paper, character-based similarity functions are being used to make a
scalable approach to process big data.

TheMapReduce [5] framework proposed byGoogle is utilized to perform substantial scale
information in a distributed manner. Therefore, there has been valuable research on
analytical join query handling in MapReduce for extensive datasets. In any case, few
applications need to deal with an immense amount of data, and there are three fundamental
difficulties to be intended which occurs usually.

First, because the size of the data collection is enormous, the data must be partitioned and
prepared appropriately. Thus, workload-aware information dividing procedures are
required. These guarantees not only balance the data as well as an output of each
machine. Second, a Complex filtering strategy is needed since the quantity of correlations
develops significantly as the dataset size increase. Third, a principle issue occurs when
handling a join query on MapReduce over the multiple datasets.

This paper presents a hybrid approach by using Pass Join (pl. refers Section 2 of this
paper), the map-reduce framework with the concept of the Map-Reduce Frequency Adaptive
(MRFA) (pl. refers Section 2), to handle the basic record join. This approach has been designed
to Handle Data-Skewness in the Character Based String Similarity Join.

As explained, pass join itself is a robust algorithm which states “proposed a high-quality
partition-based signature scheme for the edit distance function” [14–19], it has been proven to
be an effective and efficient method when it comes to generating the various candidate pairs
in the concerned dataset. This paper presents a MapReduce framework of pass join using
MRFA [24] concepts. For the string, the similarity joins named as MRFA-SSJ. Hence, the
proposed work has the combined advantages of pass join [14] and MRFA [24].

The proposed technique can be used in various felid to have better result estimation and
calculation. The proposed technique helps in better decision making as it evenly distributes
the data. An area in which it can be applied viz. optimization algorithms, IOT of an
educational environment, quadratic assignment problem, decision-based methods,
neutrosophic problems, etc. [32–40]

The rest of the paper is organized as follows: Section 2 describes the preliminaries which
are related to the proposed work. Section 3 is devoted to the literature review of the existing
techniques. Formulation of the proposed work has been discussed in Section 4. Experimental
results are described in Section 5 and the conclusion has been discussed in Section 6.

2. Material and methods
This section briefly describes the important concepts which are repeatedly used in this paper.
The proposed work strictly focuses on the data skewness effects in join operations [19].
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For implementing the same, one must be familiar with the concepts of Hadoop and
MapReduce. All these concepts are briefly described as follows:

a) Pass Join [14]: Pass join is the method which efficiently and adaptively deals in short
and long strings simultaneously by employing its partition-based methods. This
approach is used to generate the candidate pairs by using inverted indices and is a
novel pruning technique to verify the candidate pairs.

b) Partition Scheme [14,18–19]: Partition scheme is used for joining key of records R
belonging to relation S, followed by the even partitioning scheme and it is partitioned
into Tþ1 segments. Let s_len be the length of the join key. Let segment be
ask¼ s_len−bs_len=ðTþ 1ÞÞ*j− ðTþ 1ÞÞc− j. Thus the length of the first Tþ 1−k
segments will be bðs_len=ðTþ 1Þj− Þc; − jwhile the length of the last k segments will
be Øs_len=j−ðTþ 1Þe− j. Also, Lil (inverted index) is used as a set of ith segments of
length l.

c) Substring Selection and Candidate Pair Generation [14,18–19]: Substring selection and
candidate pair generation are important steps in pass join. For each segment belonging
to Lil, choose substrings of the join key of the record of ‘R’ according to themulti-match
aware method as described in “Pass Join”. The minimal start position for the substring
is max ð1; pi−ði−1ÞÞ while the maximal start position is min ðs len− liþ 1;
piþ ði− 1ÞÞ, where pi is the start position of the segment, i stands for the ith
segment, s_len is the length of the original join key which has been partitioned into
segments and li is the length of the segment. Further, performing the enhancement of
the time complexitywhich generates even fewer substrings, changing theminimal and
maximal start positions.

Minimal start position ¼ max ðpi��ði� 1Þ; pi��Ur� sÞ (1)

Maximal start position ¼ min ðpiþ slen ��liþ ðUþ 1� iÞ; piþ Us� rÞ (2)

where, Ur – s ¼ li – s _ lenþ ðs _ len – r _ len  iÞ, Us – r ¼ i – l and U ¼ Ur – sþ Us− r

d) Going this way, the numbers of substrings generated are reduced fromO (T3) to O (T2)
[19], where l is the length of the entire string. After generating the substrings, there is a
need to check that the segmentmatches any one of the substrings or not. If it does, then
it implies that the pair of records from relation R and S are candidate pairs. Using
candidate pairs, there is a possibility that their edit distance satisfies the threshold
value for edit distance. This method helps to avoid calculating the edit distance of all
pairs from relations R and S, as computing edit distance is a time-consuming process.

e) Verification of the Candidate Pairs [14,19]: After generating the candidate pairs there
needs to verify whether these pairs satisfy the edit distance threshold or not. For this,
the edit distance threshold of the verification algorithm is used as described in Pass
Join. Let the join keys of the candidate pair be r and s & Let r_len and s_len be the
lengths of the join keys from relations R and S respectively [14]. Let length difference
be D ¼ s _ len − r _ len.

f) Let us use r_len3 s_len matrix M. Using dynamic programming to compute the edit
distance, the entries of M can be defined recursively [14] as:

M½0; j� ¼ j; 0 < ¼ j < ¼ slen

M½i; j� ¼ minðM½i� 1; j� þ 1; M½i; j� 1� þ 1; M½i� 1; j� 1� þ d (3)

d ¼ 0, if the ith character of r5jth character of s ¼ 0, else 1.
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g) The length-aware verification only compute values of M[i,j] such that i− bT−Dj−
=2c− j< ¼ j < ¼ iþ bT−Dj− =2c− j. To terminate the process early, the
expected edit distance is computed for every row, as Eði;jÞ ¼ M½i;j�þ
ðs len− jÞ− ðr_len− iÞ. This gives a lower bound on the value of M[i,j]. Thus if for
some i and all j, E[i,j] is greater than T, then further terminate the verification process
and reject the candidate pair [14].

h) To further improve the process, extension-based verification [14] and sharing-
computation [14] algorithms are being used. The extension-based verification
provides tighter edit distance thresholds. Partition the s and r into three parts: sl, sm,
sr and rl, rm, rr respectively. sm and rm correspond to the portions of s and r that
match, sl and rl are the portions to the left of sm and rm respectively. Similarly, sr and
rr are portions to the right of sm and rm respectively. Let EDl be the edit distance of sl
and rl and EDr be the edit distance between sr and rr. The ith segment of s matched
with a substring of r. Thus, for EDl the threshold is chosen as Tl ¼ i− 1, whereas the
threshold for EDr is ðTr ¼ Tþ 1− iÞ. Firstly, compute the EDl, if EDI > Tl then,
simply reject the candidate pair, else compute the EDr and checkwhether EDr <¼ Tr.

i) Repeating computations can be avoided by sharing-computation [14]. Assume that, s
got compared to ri. Further, it compares, s to riþ 1. The longest common prefix
between riþ 1and ri is foundandassume its lengthbe c.Values ofM[i,j] for 1<5 i <5 c
and 1 < 5 j< 5 s_len are copied from the previous matrix to the new matrix. Thus,
individually avoid computing these values again for the next verification.

j) MRFA [24]: This is an approach which is used to handle the data skewness in join
operations. It is a skew insensitive join algorithm, based on a distributed histogram. It
depends on randomized key redistribution and deals in hash-based joins.

k) Hadoop [1,25–28]: It is an open source tool to handle big data. It provides effective
results for the large dataset and handles the real data which is motivated by Google’s
MapReduce and Google File System [16]. Hadoop Distributed File System (HDFS) has
been used to create the multiple replicas of data blocks.

l) Similarity Join [1–3,12–24,41–47]: It evaluateswhether two strings are similar or not. If
the similarity function exceeds a given threshold, the two strings are said to be similar.
Basically, the similarity function is broadly divided into three categories: token-based
similarity, character-based similarity and hybrid similarity and this paper are using
the character-based similarity function.

m) String Similarity [12–41]: Two strings are said to be similar if the edit distance
between them satisfies the threshold i.e. EDðr; sÞ <¼ T, where r and s are strings
from the relations R and S respectively. For example, r5bscde and s5abscde and
T52. ED (“bscde”, “abscde”)51 since the r can be transferred to s by inserting a
character “a”. ED must be smaller than the given threshold for similar strings.

3. Literature review
This section presents the literature review of existing techniques, which are related to the
proposed work. Two principal methods for addressing the problem of edit distance similarity
join are the TRIE-Join [12] and Ed-join [13]. Ed-join employs a filter and refines framework. In
filtering, the signature for each of the strings is generated. These signatures are used to create
candidate pairs. Refining involves verifying the candidate pairs. TRIE-Join [12] uses a
TRIE-based framework on the other hand. A TRIE structure is used to share prefixes.
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Prefix pruning is also used to improve the performance. The drawback of Ed-join is that its
performance is not good for short strings. The signatures generated are not good enough and
thus many candidate pairs are generated, elongating the time required for the verification or
refining step. The drawback of the TRIE-Join is that it is not efficient for long strings, as long
strings do not have many shared prefixes. Pass Join [14] overcomes the problem we have to
process both long and short strings by employing its partition-based method. In this paper,
Pass Join has been adapted for theMapReduce framework. Thismethodwill support not only
long but also short strings, in big data. Q-Chunk [15] is an asymmetric signature scheme. This
method is based on the q-grams and q-chunks methods. The proposed two algorithms are
IndexChunk and IndexGram. Both algorithmsachieve theminimumnumber of signature asþ1.
Adapt Join [16] is based on the prefix filtering based framework. It selects an object whose
prefixes have no overlap. This method supports sim search queries. V-Chunk [17] is a novel
techniquewhich deals in non-overlapping substrings. This approach is based on the concept of a
chunk boundary dictionary. It has been designed by integrating existing filtering techniques
and also a new greedy algorithm which automatically selects the good chunks from the given
dataset. Mass join [19] supports both characters and set based similarity function. Limitation of
both Pass join, and Mass join is that they have been applied only in self-join operations
[14,18,19,43]. Pass join is self-sufficient to handle the edit distance [18,19].

Skewreduce [28,29] handles the skewness in the MapReduce framework in a passive mode
and puts an extra burden on the user who must provide cost functions. It cannot handle any
unexpected conditions at runtime.To overcome thedrawbacks of this algorithmSkewTunehas
been proposed. SkewTune [28] is designed for MapReduce-type systems, where each operator
reads data from disk and writes data to disk and is thus decoupled from other operators in the
data flow. Share skew [30] has been proposed to handle the skewness specifically for the multi-
way join. It finds the join attribute values that frequently appear (heavy hitters). For random
data, high communication cost is there. MG-Join [18] is multiple global orderingmethods based
on set-based similarity functions and applied explicitly to multiple joins.

MRSim Join [43] has been proposed to handle the similarity join problems. It can be used
with any dataset which lies in metrics space. It has excellent execution and a scalability
property which uses MapReduce programming model and based on iteratively partition
scheme but inefficient to handle the data skewness. V-SMART Join [2] is a MapReduce
framework to handle all pair of entities, and it is a two-stage algorithm to analyze the exact
similarity for all candidate pairs. Cluster Join [23] method achieves the high probability of
handling the load balancing (data skewness) by using sampling. They have introduced the
novel filtering method based on bisector specific to the distance functions including
Euclidean and Hamming distance; hence it cannot handle the edit distance. Map-Reduce
Distance based Self Join (MR-DSJ) [47] grid partitioning based self-join algorithm gives
results without duplication. Due to data skewness, the runtime is high and enables handling
multiple iterations. Algorithm for load balancing [5] addresses the two factors: an amount of
message transmission and data skewness by extending the estimation-based algorithm. It
enables to reduce the network traffic and cost time.

Scalable Load Balancing for MapReduce-based Record Linkage [27] is another algorithm
for load balancing, devoted explicitly to the sketch-based approximate data profiles. Dynamic
Resource Allocation for MapReduce with Data Skew (DREAMS) [10] is a data assigning
scheme, based on runtime partitioning skewmitigation. This scheme is achieved by adjusting
the task runtime resource allocation. Locality-Aware and Fairness-Aware Key Partitioning
(LEEN) [48] algorithm handle the partitioning skew in network bandwidth dissipation during
the shuffling phase. Fast and Scalable MapReduce Similarity Join (FACET) [46] has been
developed for self- join case only and solve the vector join problems on large datasets. It is
unable to handle the data skewness. MapReduce Frequency Adaptive (MRFA) [24] is a skew
insensitive join algorithm which is widely used in different algorithms.
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Hierarchical segment tree index (HS-Tree) [47] has been developed to handle two variants
such as threshold-based string similarity search and top-k string similarity search. But it does
not handle the data skewness problem.

MapReduce FrequencyAdaptive Group by-Join (MRFAG) [49] was proposed as a solution
to handle the skewness problem by using group by joins usingMapReduce framework based
on distributed histograms and a critical randomized redistribution approach. It is an
extended version of the MRFA algorithm. Efficient parallel set similarity to join in
MapReduce [25] method is divided into three stages and is a dynamic approach to reduce data
duplication. It is incapable of handling data skewness problem in basic record join operations
and has lower pruning power due to the generation of many false positives.

To improve on state of the art, a hybrid approach to handle the data skewness in
character-based string similarity join has been proposed in this paper. This approach has
been divided into three stages. The first stage is dedicated to preprocessing and calculates the
global minimum and maximum length of the strings. The second stage is committed to the
MapReduce Framework of pass join, and the last stage contains an algorithm MRFA, which
is designed for string similarity join namely MRFA-SSJ.

4. Proposed approach
This section presents the proposed approach, and it is dealing with basic record join (BRJ)
method. The reason for the poor performance of BRJ is due to the skewness, and it affects the
workload balance when it deals with a large amount of data (as described in Efficient Parallel
Set-Similarity Join) [25]. A MapReduce framework is proposed based on Pass Join name as
“MR-Pass Join” following the MRFA-SSJ algorithm to handle the skewness effect in a join
operation. MR-Pass Join gives the list of pairs of records which satisfy the edit distance
threshold. BRJ has been used to calculate the entire records of the pairs along with the edit
distance value. However, the performance of BRJ is affected due to skewness in the data. The
problem overcome by the MRFA algorithm, it is adapting to the BRJ framework by
incorporating the similarity join concept. Further, the proposed work is specified in the
following three stages along with algorithms and examples.

Let’s take an example referred in Table 1. The table contains records from relations R and
S. The tag of a record has the following values:

1. R_tag5This indicates that the record belongs to relation R

2. S_tag5This indicates that the record belongs to relation S

3. Pair_tag5This indicates that the record defines an RID pair (which will be computed
in stage 2 and is used in stage 3).

Tag RID Key (the 1st string of the entire record – used for joining) Value (the rest of the record)

R_tag 1 A & a mobility sales & service
R_tag 2 Aa 20meetings 20in 20charlotte
R_tag 3 Aaa and grand canyon discounts
R_tag 4 aaacookcountyconsolidation.com Null
R_tag 5 Aaacoman Null
S_tag 1 a & a mobility sales & service & a mobility sales & service
S_tag 2 aa 20meetings 20in 20charlotte 20meetings 20in 20charlotte
S_tag 3 aaa and grand canyon discounts and grand canyon discounts
S_tag 4 aaacookcountyconsolidation.com Null

Table 1.
Example of
Sample Input.
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4.1 Stage 1
Stage 1 computes the distribution of data from the relations R and S.While the records fromR
can merely be hashed to the reducers in the next stage, a record from S needs to go to all the
reducers containing those records of R with which it can possibly be joined. This stage
outputs a partition list, which is explained in the reducer phase. The input for this stage will
only have records from the relation R. The working of the mapper and reducer are described
in Sections 4.1.1 and 4.1.2.

4.1.1Mapper-1.Themap phase is used to find the local maximum andminimum length of
strings from R that will be passed to each reducer in the next stage. The mappers will
compute the maximum and minimum of the subset of data that they have received. Let the
numReducers be the number of reducers that shall be used in the next stage. Every mapper
has a buffer of the same size as numReducers. The buffer maintains the minimum and
maximum lengths of strings that are passed to the reducers. The buffer is initialized to
contain sentinel values corresponding to each reducer. This is done by using the hash-based
distribution method to determine the string presence in which reducer. Firstly, note down the
length of the join key as follows:

Length5len(key), where key is the join key
Then, use the same formula, as used by Hadoop, to determine the reducer destination,

red_dest as follows:
red_dest5(hash(key) & sys.maxsize) % numReducers
Once the reducer destination has been calculated, further update the values of the

minimum and maximum lengths of strings in the buffer corresponding to that reducer.
4.1.1.1 Algorithm 1.1 (Mapper-1). This algorithm is dedicated to the mapper phase of

Hadoop. It gets the dataset R as input. The mapper aims to compute the minimum and
maximum lengths of all the strings that will be passed to each reducer in the next stage. For
every <key, value> pair in a subset of data it receives, themapper computes to which reducer
the string will be the map to (based on hash partitioning the key). It uses the reducer
destination along with the length of the string to compute the least and greatest length of
strings passed to the reducer.

4.1.2 Reducer-1. This reducer calculates the global minimum and maximum lengths of
strings that will be passed to each reducer in the next stage. Only one reducer has been used
for stage1. It receives as input values of the form <red_dest, min_length, max_length>,
where red_dest is the reducer number, min_length is the local minimum length of the strings
passed to that reducer (local minimum as it calculated by a mapper using only a subset of the
data), max_length is local maximum length of the strings passed to that reducer.

The reducer calculates the overallminimumandmaximum lengths of strings corresponding
to each reducer, which is shown in Figure 1. It outputs a partition list, which has values of the
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form <red_dest, global_min_length, global_max_length>, where red_dest is the reducer
number, global_min_length is the global minimum length of the strings passed to that reducer,
global_max_length is global maximum length of the strings passed to that reducer.

4.1.2.1 Algorithm 1.2 (Reducer-1). This algorithm shows how the maximum and minimum
length of strings has been calculated. Here, only 1 reducer has been used. It takes theminimum
andmaximum lengths computed by themappers for the subset of dataset R. Then it calculates
the overall minimum and maximum lengths for each reducer in the next stage. It outputs the
partition list in the form of <red_destination, global min_length, global max_length>.

The inputs to stage 1 are the records from relation R, identified by the tag ‘R_tag’. Each
mapper works on a subset of the input and outputs the local least and greatest length of
strings for a particular reducer. Let the number of reducers in the stage 2 be three: red0, red1,
red2. Only the records from the R relation are sent to the mapper. So, the input for the mapper
is as shown in Table 2: -

Mapper computes two things for each string: the reducer destination, red_dest, i.e., the
reducer to which the string will map to in the next phase (based on hash-based shuffling done
by Hadoop) and the length of the key. For instance, consider the string with RID 4. Assume
that red_dest for this string is red0. The length of this string is 30.

Thus, for each red_dest, the mapper computes the lengths of the strings that are being
mapped to it. The list used by the mapper to calculates the local minimum and maximum
lengths for each reducer. For instance, consider the output of the 1st mapper in the above
Figure 1 “red0 1 150”. red0 is the red_dest, 1 is the local minimum length, and 150 is the local
maximum of the strings that are mapped to red0.

Tag RID Key (the 1st string of the entire record – used for joining) Value (the rest of the record)

R_tag 1 A & a mobility sales & service
R_tag 2 Aa 20meetings 20in 20charlotte
R_tag 3 Aaa and grand canyon discounts
R_tag 4 aaacookcountyconsolidation.com Null
R_tag 5 Aaacoman Null

Table 2.
Input to the Mapper.

Figure 1.
Working of Stage 1.
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The output of each mapper is passed to the reducer. The reducer computes the global
minimum and maximum lengths of the strings for each red_dest. For example, suppose for
red0, the outputs given by the mappers are:

red0 1 150

red0 30 200

red0 45 500

Then the globalminimum is 1 and globalmaximum is 500. Hence the output of the reducer is:-

red0 1 500

The final output of the reducer i.e. the list of global min and max lengths for each of the
reducers is the partition list which will be required in the next stage.

4.2 Stage 2
The aim of stage 2 (MapReduce framework of candidate pair generation algorithm as
MR-Pass Join) is to distribute the data appropriately and to generate and verify all candidate
pairs. This stage receives all records from relations R and S. More details of the mapper and
reducer phase are explained in Sections 4.2.1 and 4.2.2.

4.2.1 Mapper-2. The mapper of stage 2 uses the partition list which was generated by the
reducer in the previous stage. The partition list specifies the minimum andmaximum lengths
of the strings from R that will be passed to the reducers of stage 2 in Figure 2. This list needs
to ensure that all the strings fromS that could be joinedwith a string fromR are also passed to
the same reducer that contains that string.

The point to consider, strings from both the relations R and S are distributed as follows: if
the record belongs to the relation R (by checking the relation tag), the reducer destination is
computed by the hash-based distribution technique as used byHadoop (discussed previously
in stage 1). If the record belongs to the relation S, then first the length of the join key is
calculated. The record from S is passed to all the reducers for which length of its join key
belongs to the range [min_lenþ T, max_lenþ T], where min_len, max_len are the least and
greatest length of all strings passed to that reducer and T is the edit distance threshold. The
min_len and max_len of the corresponding reducer are found from the partition list.

After deciding upon as to which reducer the record from S must be passed, the mapper
proceeds to find the segments of the join key. If there are segments, then pass the list of
segments as well as the original join key and the rest of the records to all the reducers, which
have been calculated above.

4.2.1.1 Algorithm 2.1 (Mapper-2). This algorithm gets datasets R and S as inputs. The
partition list computed in stage 1 is broadcasted to all the mappers. For strings belonging to
R, the reducer is computed according to the hash distribution based on the key. The key value
pair is then emitted along with the reducer number. For strings in S, it uses the partition list to
determine all the reducers to which the string should be passed to (based on the length of the

Figure 2.
Execution of work of

stage 2.
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join key). The key-value pair, the list of segments of the key along with the reducer number is
emitted for all the reducers to which the string should be shuffled to.

T, r_len þ T], where T is the edit distance threshold, we further check to see whether the
records from S and R form a candidate pair. If they form a candidate pair, then there is a need
to verify it. If the pair is verified, the RIDs (record IDs) of both the records, with the RID of the
record from R preceding the RID of the record from S, are printed followed by the value of the
edit distance between the join keys of the two records as shown in Figure 2.

4.2.1.2 Algorithm 2.2 (Reducer-2). The output from the mapper already has the reducer
destination (red_dest). The partition method uses this to distribute the data accordingly. The data
distributed among reducer by using the red_dest computed by themapper for every<key, value>
pair. This algorithmgets the output of themapper as input. For every string in R, it compareswith
all strings in S (with the length within the constraints) and checks if it is a candidate pair by the
multi-match awaremethod. If it is a candidate pair, it verifies the pair. If it satisfies the edit distance
threshold, then the RIDs of the 2 strings along with their edit distance value is emitted.
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From Figure 2, the input to the map phase are records from both relations R and S. Using the
partition list generated by the stage 1, themapper computes the reducer(s) to which the record
from S should be passed. For records belonging to S, the mapper also emits the list of
segments of the join key along with the start position. The reducer after receiving a subset of
the relation R along with the required strings from S generates candidate pairs and
verifies them.

Thus, the final output is a set of RID (record IDs) pairs with the value of edit distance
between them. Consider the example 1, tuple 9, Record from the relation S, as in Table 3:-

The length of the key is 30. Let the edit distance beT ¼ 5. An even partition schemewill be
followed by dividing this string into segments. According to this scheme, k ¼ 30 – ½3 –=
ð5þ 1ÞÞ*ð5þ 1ÞÞ ¼ 0�. Thus, the length of the Tþ 1 ¼ 5þ 1 ¼ 6 segments will be
½ð30=5þ 1ÞÞ� ¼ 5 ¼ 5. For each segment, the mapper outputs a pair: the start position (the
position from which the segment begins) and the segment itself. So, for this example string
the segment list from the mapper is {(0, aaaco), (5, okcou), (10, ntyco), (15, nsoli), (20, datio),
(25, n.com)} (we have considered strings to start from the index 0). This procedure is
illustrated in algorithm 2.1.

The reduce phase (algorithm 2.2) is responsible for generating substrings of the strings
from relation R for each segment of the strings from S. As an example, let us take the string
“aaacoman” belonging to the relation R. For each segment of the complete segment list (pl.
refers Table 3) the substrings of this string have been computed. So, for the 1st segment with
start position50, the list of substrings generated for this segment are {‘aaaco’}. Similarly, for
the 2nd segment with start position55, the list of substrings is {‘oman’, ‘man’, ‘an’]}. For our
example, no substrings are generated for the rest of the segments.

When a pair is identified to be a candidate one, it is sent for verification. As explained, the
extension-based verification and sharing-computation algorithms are used to verify the pair.
If they pass the edit distance threshold then, the generated output of strings would be
recorded ids. In case of our example, the pair, although being a candidate one, fails to satisfy
the edit distance threshold.

Stages 1 and 2 are dedicated to theMRPass Join which is aMapReduce version of the pass
join. It can handle the strings of both the length viz short and long, while existing techniques
can handle one type at a time. The proposed method uses 2-phase verification; merge key-
value pairs & light-weight filter unit for redundancy control. It is the better method for
candidate pair generation than the existingmethods in the literature. Aswell as it is a scalable
solution for the string similarity join.

4.3 Stage 3
In this stage, the basic record join algorithm has been used, as this is the recommended
alternative as opposed to one phase record join. However, it is robust to the data skewness. So
here the aim is to use MRFA algorithm concepts to handle data skewness [24].This stage
receives the RID pairs generated by the previous stage along with the records of R and S. In
the map phase, for each record, a <RID, record> pair is emitted. For each RID pair, two
<key, value> pairs are emitted, where each pair uses one of the RIDs of the RID pairs as the
key. The value for both the pairs is the RID pair along with the value of the edit distance
computed in the previous stage.

According to the original algorithm presented by Vernica, R.; Carey, M. J & Li, C; in [25]
every reducer will receive exactly one record, and the rest of the data will be RID pairs along

Tag RID Key Value

S_tag 4 aaacookcountyconsolidation.com Null
Table 3.

Record from relation S.
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with the similarity function value. At this point, there is a likelihood of having skewness since
one record can have join results with many other records, i.e., there may be many RID pairs
for a single record. Thus, there is a high possibility of skewness occurrence in stage 3. Here,
MRFA [24] is used to deal with the skewness at this point. Since there is a possibility, the
number of RID pairs for one record can be huge, therefore use of the MRFA algorithm to
compute the frequencies of these RID pairs. Further, it will determine whether there is a need
to divide the RID pairs into buckets or not. Hence the frequencies are computed. If the
frequency is higher than a specific threshold frequency [50,51], then these RID pairs will be
divided into buckets and distributed to different reducers. The tuple containing the entire
record of the relationship will also be replicated to all the reducers which have the RID pair
bucket as shown in Figure 3.

After such distribution is done, for each RID pair <key, value> pairs are emittedwhere the
key is the RID pair, and the value is the record (either from relation R or S) and the edit
distance of the RID pair. The next phase uses an identity mapper which emits the previous
<key, value> pairs. This list is then sorted according to the key (which is the RID pair). The
reducer then merges the two records, which have the same key, along with the edit distance
value and output results of stage 2 (see Figure 4).

RID pairs have the tag RID_pair_tag. If the number of RID pairs for one record exceeds the
user-defined threshold frequency, then they are divided into buckets (in the example above,
the RID pairs are divided into four buckets, and each bucket is distributed to one reducer).
The record, which has the tag record_tag, is replicated across all the reducers to which the
buckets of the RID pairs have been distributed, as shown in the Figure 3. RID_pair_tag and
record_tag is used to differentiate between the record and the RID pairs. Since stage 3 is very
complicated, four mapper-reducer phases have been applied in this. All the phases are
described through the algorithms.

In Figure 3, four reducers i0, i1, i2 and i3 have been considered. RID_pair_tag indicates that
the record is an RID pair, while record_tag indicates that the record belongs to relation R or S.
In both the cases value is the entire record.

4.3.1 Algorithm 3.1 (Mapper-Reducer-3(i)). This is a map phase only. It takes datasets R
and S and the RID pairs emitted from the previous stage as input. For every record it emits the

Figure 3.
Workflow of stage 3.
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same with a record tag, while for every RID pair it emits the RID pair twice, each with one of
the RIDs as their key.

4.3.2 Algorithm 3.2 (Mapper-Reducer-3(ii)). In this phase the frequency of the RID pairs
that have the same key is calculated. The mapper emits ‘1’ for each RID pair and the reducer
sums up all the frequencies for each key.

Figure 4.
Basic record join used

with MRFA-SSJ to
combat skewness in
string similarity join.
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4.3.3 Algorithm 3.3 (Mapper-Reducer-3(iii)). Here, using the frequencies computed in the
previous MapReduce phase, it is determined whether the RID pairs of the same key are to be
split into buckets, based on a user-defined threshold or not. If the RID pairs are split into
buckets, then the corresponding record from the datasets R and S are replicated to all the
reducers to which the buckets are sent. The partitioner distributes the data according the
reducer destination thus computed. The reducer emits all the RID pairs along with the
corresponding the record from R or S that matches one of the RIDs.

4.3.4 Algorithm 3.4(Mapper-Reducer-3(iv)). 4.3.4.1 MRFA-SSJ partitioner. The output
from the mapper already has the reducer destination. The partition technique uses this
method distribute the data accordingly.
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Finally, the last phase of mapper-reducer in stage 3 is dedicated to find out the identity
mapper for every RID pair. It is used to divide the keys in between map-reduce. An identity
mapper is used which maps the output from the previous phase. The reducer, for every RID
pair merges the corresponding record values. It emits the two records along with the edit
distance value.

Here, stage 3 has been illustrated by using Example1 as in Tables 1, 4 and 5: -

� For records, the mapper outputs in the form <key, value> pairs: for example � <1,
R_tag 1 a and a mobility sales & service>.

� Consider the RID pair, “Pair_tag 1 52,763 7”. For such RID pair, the output as shown in
Table 5:

Tag RID 1 RID 2 Edit distance

Pair_tag 1 52,763 7
Pair_tag 1 1 0
Pair_tag 230,150 146,949 11

Key Value

1 Pair_tag 1 52,763 7
52,763 Pair_tag 1 52,763 7

Table 4.
RID pairs generated

from stage 2.

Table 5.
output of RID pairs.
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Now, once the RID pairs generate the records are joined together, at the same time there is
a need to get ensure to avoid skewness which can hamper the performance. One record
can be paired with many records which can cause skewness. For this MapReduce phase,
algorithm 3.2 has been used. Using the concepts from MRFA, distribute the output of
stage 2 on the basis of frequency. Then compute the total number of RID pairs for 1
record. If this frequency is greater than the user-defined threshold frequency then the
entire set of RID pairs is divided into buckets, which are distributed to different reducers.
The record is then replicated across all those reducers for the join operation. Then for RID
pairs, the record is set as the value while the RID pair acts as the key. This is one half of
the result which is computed by the MapReduce phase in algorithm 3.3. To combine the
two halves, group all the <key, value> pairs according to the keys (here the key is the RID
pair) explained in algorithm 3.4.

Two <key, value> pairs sharing the same key are thus the two halves of the result. The
two values (i.e. records) are then combined to give the final results.

Stage 3 is dedicated to the most crucial and important part of this proposed technique. It is
not affected method as other existing algorithms in literature are sensitive to data skewness.
Analysis has been done by following the ZipF law. The detailed explanation and comparative
study has been shown in Section 4 (pl.refer Experimental Analysis).

4.3.5 Illustration of the proposed approach. The algorithm begins with Stage 1, which
computes how the data from relation R will be distributed. It outputs the minimum and
maximum lengths of the strings to each reducer. So, for instance, if the shortest string
received by the reducer and its length is 20 and the longest string is of length 500, then the
output will be the reducer number followed by the values of the minimum and maximum
lengths of the strings (using algorithms 1.1 and 1.2).

For the second stage, the map phase process strings from S as follows: Consider the
string from relation S “aaacookcountyconsolidation.com”. Its length is 30. Let the edit
distance, T ¼ 5. An even partition scheme will be followed to divide this string into
segments. According to this scheme, k ¼ 30− ½30=ð5þ 1ÞÞ*ð5þ 1Þ� ¼ 0�. Thus the
length of the Tþ 1 ¼ 5þ 1 ¼ 6 segments will be ½ð30=ð5þ 1ÞÞ� ¼ 5. For each segment,
the mapper outputs a pair: the start position (the position from which the segment
begins) and the segment itself. So for this example string the segment list from the
mapper is {(0, aaaco), (5, okcou), (10, ntyco), (15, nsoli), (20, datio), (25, n.com)} (here, the
considered strings has been started from the index 0). This procedure is illustrated in
Algorithm 2.1.

The reduce phase (algorithm 2.2) is responsible for generating substrings of the strings
from relation R for each segment of the strings from S. As an example, consider the string
“aaacoman” belonging to the relation R. For each segment of the used segment list has been
computed. So, for the 1st segment with start position50, the list of substrings generated for
this segment is {‘aaaco’}. Similarly, for the 2nd segment with start position55, the list of
substrings is {’oman’, ’man’, ’an’]}. For our example, no substrings are generated for the rest
of the segments.

As and when the list of substrings for each segment is generated the next step is to
check whether the segment matches any one of the substrings in the list or not. In this
example, the 1st segment matched the substring that was generated. Hence these two
strings have been concluded to be a candidate pair. When a pair is identified to be a
candidate one, it is sent for verification. As explained, the extension-based verification
and sharing computation algorithms are used to verify the pair. If they pass the edit
distance threshold, then the record IDs of both the strings is the output result. In case of
our example, the pair, although being a candidate one, fails to satisfy the edit distance
threshold.
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Now, once the RID pairs generate the records they are joined together at the same time there
is a need to handle skewnesswhich can hamper the performance. One record can be pairedwith
many records which can cause skewness. For this MapReduce phase, algorithm 3.2 has been
used. Using the concepts from MRFA, distribute the output of stage 2 based on frequencies.
Then compute the total number of RID pairs for one record. If this frequency is greater than the
user-defined threshold frequency then the entire set of RID pairs are divided into the number of
buckets, which are distributed to different reducers. Now, records get start replicating across all
those reducers for the join operation. Then for RID pairs, the record is set as the value while the
RID pair acts as the key. This is one half of the result which is computed by the MapReduce
phase in algorithm 3.3. To combine the two halves, group all the <key, value> pairs according
to the keys (here the key is the RID pair) explained in algorithm 3.4. Two <key, value> pairs
sharing the same key are thus the result will come in two halves. Further, these two halves (i.e.
records) have been combined for the final outcome. After this illustration, experiment analysis
(pl. refers to section 4) follows the detailed setup for the proposed approach with graphical
results and comparative study of the compared techniques.

5. Experimental analysis
In this section, we are analyzing the performance of the proposedmethod.We have compared
our work with the best methods, namely: Improved Repartition Join [52], Standard
Repartition Join [52] andMRFA Join algorithm [24].We used the set of 15 node clusters, where
every node consists of Intel Xenon processor E5520 and contains 3GHz with four cores, 12GB
of RAM and five 200GBHard disks.We had also set up the extra node for running the master
node, to manage Hadoop jobs as well as HDFS working.

We have installed the Hadoop 2.6.0, and every node consists of the Ubuntu 9.04, 64-bit,
server edition operating system, Java 1.6 with a 64-bit server JVM.We have done some changes
in a default Hadoop configuration just to maximize the parallelism and minimize the running
time; the default block size of each block is 64 bit, but we set the block size of HDFS to 128 bit,
and allocate 1GB of virtual memory to each node and 1GB of virtual memory to each map/
reduce task. It runs eight maps, and eight reduce tasks in parallel on each node. As well as
we had set the replication factor to 1 and disable the unpredictable task execution feature.

We had followed the Zipf law to study the effect of data skewness on the proposed
method during the join operation. To examine the impact of skewness, it was
incorporated artificially in the join operations by following the Zipf distribution law
[53,54]. The factor of Zipf law varies from 0 to 1. Here “0” stands for the uniform data
distribution which carries zero skewness whereas “1” stands for highly skewed data. In
this experiment, we fix the size of the input up to 10 GB of data on the right side of the
table and one GB of data in the left side table. So, the range of final result varies from 5 GB
to 40 GB records.

We have analyzed during the experiment that our proposed algorithms outperform
other existing algorithms which we have compared for low to medium skewness. As
confirmed from the series of experiments performed on Query log, DBLP datasets and
for more realistic results we have used the real IPS and cookies dataset. It can be shown
that the proposed method is better than the other existing methods available in the
literature for handling data skewness in big data for the Basic Record Join method.
Further, the proposed method has been compared with the existing techniques namely:
Improved Repartition Join [52], Standard Reparation Join [52] and MRFA Join [24], with
respect to the join processing time and reduce shuffle time in Figures 5 and 6
respectively.

When skewness is high, all the existing algorithms are not able to perform except our
proposed algorithm. In the skew factor ranging from 0.6 to1, it shows that the job failed for
Improved repartition join and Standard repartition join due to the lack ofmemory as well as it
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affects the scalability of the algorithm. Both of the join algorithms are skew sensitive
algorithms whereas, MRFA sustains for the entire range of skewness factor, but it does not
ensure the scalability.While it is comparedwith the proposedmethod, it has been noticed that
the proposedmethod takes very less time to process the jobs at high data skewness. Hence the
proposed method is skew-insensitive for character-based string similarity join. Comparison
of different techniques has been made in Table 6.

6. Conclusion
In this paper, a new approach has been presented for handling data skewness in character-based
string similarity join using the MapReduce framework, and we have proposed an algorithm
namelyMR-Pass Join for handling this task.After performing the experiments,weobserved that
thecandidatepairgenerationmethodisneithergeneratingfalsepositivenorfalsenegativeresults.
We found that theproposed algorithmensures scalabilitywith reasonablequeryprocessing time

Figure 6.
Shuffle time with
respect to the skewness
in data.

Figure 5.
Job processing time
with respect to skew
effect in data and the
time taken by
techniques to process it
completely.
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for string similarity database join. To obtain the results of theproposed approachMRFA-SSJ has
been compared with the best-known solutions namely Improved Repartition Join, Standard
Repartition Join, andMRFA Join. Our results are found to be better, and result analysis has been
done to the Zipf law in respect of reducing shuffling time and joins processing time.

The proposed algorithm is highly skew insensitive, and it is a scalable method with
respect to the high usage ofmemory. Proposed algorithm survives till the highest value of the
skew factor “1” while the existing algorithms survive during the experiment till skew factor
0.5 in respect of Zipf distribution. As per our analysis, present algorithms are not able to give
good results as they are skew sensitive.

This analysis has been done on the set-up of the set of 15 cluster nodes, where we provide
1 GB virtual memory to every node and five hard disks of 200 GB. Size of map nodes in
Hadoop extended from 64 bit to 128 bit for better analysis. We had also fixed the size of input
10GB in both, right & left table after the analysis the outcome varies from 5 GB to 40 GB.

It has been noticed that the proposed algorithm can handle highly skewed data whereas
other algorithms cannot, and hence it is a skew insensitive approach. The proposed algorithm
is also found to be scalable and better in load balancing. It outperforms the existing methods
which fail to handle data skewness in similarity joins.
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