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Abstract

In this paper we study a class of complexity measures, induced by a new data structure for representing
k-valued functions (operations), called minor decision diagram. When assigning values to some variables in a
function the resulting functions are called subfunctions, and when identifying some variables the resulting
functions are called minors. The sets of essential variables in subfunctions of f are called separable in f.

We examine the maximal separable subsets of variables and their conjugates, introduced in the paper, proving
thateachsuchsethasatleastoneconjugate. Theessentialarity gap gap(f ) of the function f is the minimal number
of essential variables in f which become fictive when identifying distinct essential variables in f. We also
investigate separable sets of variables in functions with non-trivial arity gap. This allows us to solve several
important algebraic, computational and combinatorial problems about the finite-valued functions.
Keywords Separable set, Subfunction, Identification minor, Minor decision diagram, Minor complexity
Paper type Original Article

1. Introduction
The complexity of finite operations is still one of the fundamental tasks in the theory of
computation and besides classical methods like substitution or degree arguments a bunch of
combinatorial, and algebraic techniques have been introduced to tackle this extremely
difficult problem.

A logic gate is a physical device that realizes a Boolean function. A logic circuit is a direct
acyclic graph in which all vertices except input vertices carry the labels of gates. When
realizing #-variable k-valued functions the circuit is called the (%, n)-circuit or Multi-Valued
Logic circust (MVL-circuit).

To move from logical circuits to MVL-circuits, researchers attempt to adapt CMOS
(complementary metal oxide semiconductor), I’L (integrated injection logic) and ECL (emitter-
coupled logic) technologies to implement the many-valued and fuzzy logics gates. The MVL-
circuits offer more potential opportunities for the improvement of present VLSI circuit
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designs. For instance, MVL-circuits are well-applied in memory technology as flash memory,
dynamic RAM, and in algebraic circuits [4].

In this paper we investigate a method for reduction of finite valued functions, namely by
their identification minors. This method is a basic model of computing with MVL-circuits
corresponding to collapsing of some inputs in the circuits. We, also study the computational
complexity of this method and classify the functions in finite algebras for small values of &
and # under such complexity.

Computational complexity is examined in concrete and abstract terms. The concrete analysis
is based on models that capture the exchange of space for time. It is also performed via the
knowledge about circuit complexity of functions. The abstract analysis is done via complexity
classes, the classification of data structures, functions etc. by the time and/or space they need.

There are two key methods for reduction (computing) of the k-valued functions which are
realized by assigning constants or variables to their inputs. Then the resulting objects are:
subfunctions or minors, respectively. These reductions are also naturally suited to
complexity measures, which illustrate “difficulty” of computing as the number of
subfunctions, separable sets, and minors of the functions.

Another topic in complexity theory is to classify finite functions by their complexity such
that the functions are grouped into equivalence classes with same evaluations of the
corresponding complexities. Each equivalence relation in the algebra P}/ of £-valued functions
determines a transformation group whose orbits are the equivalence classes (see [8,10,12].
Using the lattice of Restricted Affine Groups (RAG) in [15] we have obtained upper bounds of
different combinatorial parameters of several natural equivalences in P} for small values of £
and 7. In the present paper we follow this line to study assigning (not necessarily unique)
variable names to some of the input variables in a function f. This method of computing
consists of equalizing the values of several inputs of f.

Section 2 introduces the basic definitions and notation of separable sets, subfunctions,
minors, arity gap, etc. An important result, namely if a function has non-trivial arity gap then
all its sets of essential variables are separable, complements this section. Section 3 examines
the ordered decision diagrams (ODD), minor decomposition trees (MDTs) and minor decision
diagrams (MDDs) of k-valued functions. In Section 3.3 we treat the minor complexities of
functions with their classifications by the transformation groups. Section 4 is an illustration of
the results in the paper applied to the simplest case of Boolean functions. In the Appendix we
provide a classification of all ternary Boolean functions with respect to the minor complexity.

2. Subfunctions and minors of functions

A discrete function fis defined as amapping: f : A — BwherethedomainA = X! _;4;and the
range B are non-empty finite or countable sets. Let X = {x1, %2, ...} be a countable set of
variables and let X;, = {x1, %2, ..., %,} denote the set of the first # variables in X. Let % be a
natural number with &2 > 2. Let Z, denote the set Z, = {0,1,...,k—1}. The operations
addition “@” and product “.” modulo % constitute Z, as a ring. An n-ary k-valued function
(operation) on Zyis a mapping f : Z]' — Z, for some natural number 7, called the arity of f. P}}
denotes the set of all #-ary k-valued functions and P, = U2 | P} is called the algebra of
k-valued logic. Tt is well-known fact that there are #** functions in P}l For simplicity, let us
assume that throughout the paper we shall consider &-valued functions, only.

For a given variable x and a € Z;,, x* is defined as follows:

« |1 i x=a
= 0 if x#a.

The ring-sum expansion (RSE) of a function fis the sum modulo % of a constant and products
of variables x; or x7, (for a, a € Z) of f. For example, 1@ x145 is a RSE of the function f in
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the algebra P2, with £(1,2) = 2,(2,2) = 0 and f = 1, otherwise. Any k instances of the
same product in the RSE can be eliminated since they sum to 0. Throughout the present
paper, we shall use RSE-representation of functions.

Let f € P} and let var(f) = {x1,...,x,} be the set of all variables, which occur in /. We
say that thes-th variable x; € var(f)is essentialin f, or fessentially depends on x;, if there exist
values a1, . . ., a,, b € 7, such that

f(ala ey i1, 858y - - ,dn) ;éf(ah e 7ai—17b7ai+17 o 7an)‘

The set of all essential variables in the function fis denoted Ess(f ) and ess(f) = |Ess(f)|- The
variables from var (f) which are not essential in f € P} are called inessential or fictive.

Let x; be an essential variable in f and let ¢ be a constant from Z,. The function
g = f(x; = ¢) obtained from f € P} by assigning the constant ¢ to the variable x; is called a
simple subfunction of f (sometimes termed a cofactor or a restriction). When g is a simple
subfunction of f we write f >g. The transitive closure of > is denoted >.
Sub(f) = {g | f = g} is the set of all subfunctions of f and sub(f) = |Sub(f)|.

Let f>g,c=(c1,...,cm) €Z)" and let M = {x1,...,%,} C X with f =g > g1 >

S>81>88 =g1(x1 = 1), and g; = gjv1 (%1 = ¢iv1) fori = 1,...,m — 1. Then we write
/> 5,8 or equivalently, g = f(x1 = c1, ..., %y = ¢). For brevity, sometimes we shall also use
the notation f > g or f > g.

We say that each subfunction g of fis a reduction to f via the subfunction relationship.

Definition 2.1. A non-empty set M of essential variables in the function f is called
separable in f if there exists a subfunction g, f > g such that M = Ess(g). Sep(f) denotes the
set of all the separable sets in f and sep(f) = |Sep(f)|.

The theory of separable sets (TSS) has been developed in the work of many
mathematicians since the middle of the last century — K. Chimev [2], A. Salomaa [11], J.
Denev, I. Gyudzhenov [7], SI. Shtrakov [3] etc. TSS is important to avoid any redundancies
when computing discrete functions and other structures as graphs [2], terms [14], etc.

Let x; and x; be two distinct essential variables in f. The function / is obtained from
f € P} by identifying (collapsing) the variables x; and xj, if

h(dl, ey @i1,855, 8y 1y - - 7an) :f(ah cee 7ai—laaj7ai+17 oo 7012)7

forall (a1, ..., ay) €Z}.

Briefly, when / is obtained from f, by identifying the variable x; with x;, we write & = f;._;
and % is called a simple identification minor of f. Clearly, ess(fij) < ess(f), because
%; & Ess(fi;), but it has to be essential in . When / is a simple identification minor of f we
write f>h. The transitive closure of > is denoted > . Mur(f) = {h | f = h} is the set of all
distinct minors of f and mnr(f) = |Mnr(f)|. Let h, f > & be an identification minor of /. The
natural number 7 = ess(f) —ess(),7=11s called the order of the minor 7 of f.

We say that each minor / of fis a reduction to f via the minor relationship.

Let Mnr,,(f) denote the set Mnr,(f) ={g|geMnr(f) &ess(g) =m} and let
mnry(f) = |Mnr, ()], for all m,m < n.

Let f € P} be an n-ary k-valued function. The essential arity gap (shortly arity gap or gap)
of f1is defined as follows

gap(f) = ess(f) — max ess(h).

heMnr(f)

Let 2<p<m. We let G, denote the set of all k-valued functions which essentially depend
on m variables whose arity gap is equal to p, i.e.



v = {f €D} | ess(f) =m & gap(f) = p}.

We say that the arity gap of f is non-trivial if gap(f)=2. It is natural to expect that the
functions with “huge” gap, have to be more simple for realization by MVL-circuits and
functional schemas when computing by identifying variables.

An upper bound of gap(f) for Boolean functions is found in K. Chimev [2]and A. Salomaa
[11], showing that gap(f) < 2. In [18] R. Willard also proved that if a function f : A” - B
depends on 7 variablesand 2 < n, where &k = |A|thengap(f) < 2.Itisclear thatgap(f) < n.
Thus in all cases gap(f) < min(n, k).

A complete description of Boolean functions with non-trivial arity gap is presented in [13].
In [16] these results are extended including the functions of 4-valued logic, 2 = 2. In[17], a
special class of functions - namely the class of symmetric k-valued functions with non-trivial
arity gap, is investigated.

Definition 2.2. Two functions g and /% are called equivalent (mon-distinct as mappings)
(written g=/) if g can be obtained from 2 by permutation of variables, introduction or
deletion of inessential variables.

As mentioned earlier, there are two general ways for reduction of functions - by
subfunctions or by minors. The complexities of these processes we call the subfunction or
minor complexities, respectively.

An obvious difference between these concepts is the following: Each identification minor
can be decomposed into subfunctions, but there are subfunctions which can not be
decomposed into minors. For example, we have

k=1
fis = @ 87 = m, 2= m)
2

for all f, f € P}, where f > f(x; = m,x; = m) and f > fi;.

Let f = x1 ®x2 D x3 be a Boolean function. It is easy to see that the subfunction
f(x1 =1) = x2®x3 @1 can not be decomposed into any minors of f.

Roughly spoken, the complexity of functions, is a mapping (evaluation) Val : P} — N with
Val(x) = c for all x € X and for some natural number ¢ € N, called the in:tial value of the
complexity, and Val(f) = cforall f € P}.

The concept of complexity of functions is based on the “difficulties” when computing
several resulting objects as subfunctions, implementations, separable sets, values,
superpositions, minors, etc.

As mentioned, the computational complexities sub(f), imp(f) and sep(f) are used in [15]
to classify the functions from the algebra P} These complexities are invariants under the
action of the suitable transformation groups.

Many computations, constructions, processes, translations, mappings and so on, can be
modeled as stepwise transformations of objects known as reduction systems. Abstract
Reduction Systems (ARS) play an important role in various areas such as abstract data type
specification, functional programming, automated deductions, etc. [9] The concepts and
properties of ARS also apply to other rewrite systems such as string rewrite systems (Thue
systems), tree rewrite Systems, graph grammars, etc. For more detailed facts about ARS we
refer to J.W. Klop and Roel de Vrijer [9]. An ARS in P}! is a structure W = (P}, {=i}icp ),
where {— ;},;is a family of binary relations on P}, called reductions or rewrite relations. For a
reduction — ; the transitive and reflexive closure is denoted ;. A function g € P}} is a normal
JSorm if there is no € P} such that g — ;& In all different branches of rewriting two basic
concepts occur, known as termination (guaranteeing the existence of normal forms) and
confluence (securing the uniqueness of normal forms).
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A reduction —; has the unique normal form property (UN) if whenever ¢,7 € P} are
normal forms obtained by applying the reductions — ; on a function f € P}; then f and 7 are
equivalent (non-distinct as mappings).

The computations on functions proposed in the present paper can be regarded as an ARS,
namely: W = (P}, {>,>}). Next, we show that > completes the reduction process with
unique normal form, whereas > has not unique normal form property.

A reduction — is terminating (or strongly normalizing SN) if every reduction sequence
f = f1 = fo.. .eventually must terminate. A reduction — is weakly confluent (or has weakly
Church-Rosser property WCR) if f — » and f — v imply that there is w € P} such that 7 - w
and v-»w.

Theorem 2.3.
@) The reduction > is UN;
(1) The reduction > is SN, but it is not WCR.

Proof. () SN) If f > gtheness(f) > ess(g). Since the number of essential variables ess(f;) of
the functions f; in any reduction sequence f > f; > ... > f; >... strongly decrease, it
follows that the sequence eventually must terminate, i.e. the reduction is terminating.

(WCR) Let f be a function and f > g, and f > k. Let ¢ and 7 be normal forms such that
g > tand h > r. Note that each normal form is a resulting minor obtained by collapsing all
the essential variables in /. Hence, ess(#) < landess(r) < 1. Thenwehavef = f(x;, ..., xj),
for some xj € Ess(f) and 7 = f(x;, . .., x;), for some x; € Ess(f), and hence,

t=f(x,...,5)=f(x,..., %) =7.

Now, (i) follows from Newman’s Lemma (Theorem 1.2.1. [9]), which states that WCR &
SN = UN.

(i1) Clearly, each value of a function fwith ess(f) > 0is an its subfunction normal form and
each subfunction of f which is not a constant is not a normal form. Hence > is SN. Every non-
constant functions have at least two values (normal forms), which shows that > is not WCR
and UN. O

Thus, for each function f(x1,...,,) that depends on all its variables, the function
f(x,...,x)is the identification minor normal form of f.

An essential variable x; in a function f € P}, is called a strongly essential variable in f if there
is a constant ¢; such that Ess(f(x; = ¢;)) = Ess(f)\{x;}. The set of all strongly essential
variables in fis denoted SEss(f).

The following lemma is independently proved by K. Chimev [2] and A. Salomaa [11] in
different variations.

Lemma 2.4. [2] Let f be a function. If ess(f) > 1 then f has at least two strongly essential
variables, i.e. ess(f) > 1=|SEss(f)| > L

We are going to prove several results in TSS which will be used later to show relationship
between arity gap and separable sets.

Lemma 2.5. Let NeSep(f). If there exist m constants ci,...,cn €2, such that
N n Ess(g;) = @ where g; = f(x; = ¢;) for 1<i<m then M UN € Sep(f) for all M # @,
M - {xl, . ,xm}.

Proof. It suffices to look only at the set M = {x1,. .., %, }. First, assume that M n N = @
and without loss of generality let us assume N = {¥y41,...,4},m < s<n. Since
N e Sep(f), there exists a vector of constants, say d = (ds41,...,dy) €2, such that
N C Ess(g), where



g :f(strl = ds+17 ey X = dn)-

Let us fix an arbitrary variable from N, say the variable x; € N. Then there exist s —m — 1
constants dy, 11, . . . , ds-1 € Z such that x; € Ess(h) where

h :g(merl = dm+17 O ds—l)«

We have to prove that M C Ess(%). Let us suppose the opposite, i.e. there is a variable, say
x1 € M which is inessential in /. Since x1 € {#1, ..., %y}, there is a value ¢; € Z, such that
N n Ess(t) =@ where ¢ = f(x1 = c1). Our supposition shows that z = i(x; = ¢;) and
hence, N n Ess(h) = @,1e. xs & Ess(h), which is a contradiction. Consequently, M = Ess(h).
Then g >/ implies M C Ess(g) and hence, M uUN = Ess(g) which establishes
that M U N € Sep(f).

Second, let M N N#@. Then we can pick P = M\N and hence, P C {x1,..., %},
PnN =@, and N €Sep(f). As shown, above P U N € Sep(f) and M U N € Sep(f), as
desired. [

Corollary 2.6. Let x; and x; be two distinct essential variables in f. If thereis a constant ¢, c € Z,
such that f (x; = c) does not essentially depend on x; then {x;, x;} € Sep(f).

Definition 2.7. Let M be an inseparable set in f. A subset M; of M is called a maximal
separable subset of M in f, if M, is separable in f and for each M,, M c My C M it is
held M, & Sep(f).

The set of all maximal separable subsets of M in a function fis denoted by Max(M,f).

Definition 2.8. Let M, M; € Max(M, f) be a maximal separble subset of the inseparable
set M in f. The essential variable x; in fis called an essential conjugate of the set M; in f if for
each subfunction g, f > mag, where Ma = M\M; we have M) € Sep(g) and x; € Ess(g).

Example 2.9. Let f be the following function f = x)x; @ xjx3x](mod 3). It is easy to

see that M = {x1,43,%4} & Sep(f) and Max(M f)={{m1},{x3,24}}. Clearly, x5 is an
essential conjugate of both {x1} and {x3, %4} in /.

The next theorem was proven by K. Chimev, and it is an important step to achieve a series
of results concerning identification minors of functions [2,3].

Theorem 2.10. [2]Letf € P}, @#M ¢ Sep(f), Mh € Max(M, f) and My = M\M. Then
Sor each subfunction g,f> Msg of f, there exists a variable x;,x; € Ess(f)\M such that
x; € Ess(g) and My € Sep(g).

Note that Theorem 2.10 does not provide the existence of at least one essential conjugate of
any maximal separable subset of M. We are going to strengthen Theorem 2.10 in this
direction. First, we shall prove the following lemma.

Lemma 2.11. Let M be a non-empty inseparable set of essential variablesin f, L = Ess(f)\M
and let My € Max(M., f). Then there exists a subfunction g, f > g such that My— C Ess(g).

Proof. Without loss of generality let us assume that
My ={x1,.... %}, M ={x,..., %0} and L
= {x;n+p+17 cee axn}«
Indeed, suppose this were not the case. Then M C Ess(g) for each ¢, ce Z™ _Since the

variable x,,.1 is essential in f, there is a vector of constants b = (bm+p+17 by eZITE
such that x,,11 € Ess(t), where

¢ :f(xm+p+l = bm+p+17 sy dp = bn)
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Leta = (amt2, - - @msp) er ~! be a vector of constants from Z, such that %1 € Ess(v),
where

v = t(merZ = Qm+2y -+ s Xmyp = amHJ)-

Theorem 2.10 implies M; C Ess(v). Clearly, Ess(v) € My U {x,,11}. Hence Ess(v) = My U
{%ms1}, Ess(v) C Ess(f) and M, C Ess(v) € M with M, # Ess(v) # M which contradicts
My € Max(M, f). Consequently, there is a vector ¢€Z; of constants from Z, such that
M- C Ess(g) where f>¢g. O

The next theorem is a slight improvement of Theorem 2.10.

Theorem 2.12. Let f € P, @+ M & Sep(f) and let My € Max(M, f). Then there exists at
least one essential conjugate of My in f.

Proof. Without loss of generality let us assume
Ess(f) ={x1, ..., %}, My = {x1, ..., 2 and M = {x1, ..., Xpip}.

According to Lemma 2.11 there exists a vector ¢ = (Cyip1, - -, Cu) €Z,  such that
Mlj C Ess(g), where g :.f(.xm+p+1 = Cmiptls ooy dn = Cn)-
Since M, is separable in f there exists a vector b = (Dyip+1, -- - On) eZ:‘p such that

M, € Sep(h), where i = f(Xpipt1 = Dmapt1s - -5 Xn = bp).
Lets, 1 < s < n—m—p be the minimal natural number for which M; € Sept(t), where

¢ :f(meJJrl = Cmtptly ooy Xmapts—1 = Cm+p+s—1)

and M ¢ Ess(u), where # = t(Xpipts = Cmipts)- Lhe number s must exist because
M- C Ess(g) and M) € Sep(h).

First, let s<n—m—p. Then M; €Sep(t) implies that there exist constants
Amipis, -- - Ay €2, such that My € Sep(t) and My— C Ess(t2) where

b= tXmiprs = Auiprsy -+ Xn = dy)
and
by = U(Fmiprstl = Duiprsils -5 Xn = dy).
Pick
v= t(xiﬂ+p+s+1 = dm+p+s+17 sy X = dn)-

Clearly, M, € Sep(v) and x4 p+s € Ess(v). If (M\M) n Ess(v) = @then we are clearly done.
Next, suppose with no loss of generality that

L = {xh R xm7 xm+1: MR mer?’} g ESS(U)

with 1 < 7 < p. Then L must be inseparable in v and M; € Max(L,v). Now, Theorem 2.10
shows that x,,.,+s Is an essential conjugate of M; in v and f.

Second, let as assume s=n—m—p. Then we can pick z =f(Xpipt1 = Cmipt1s
eey Xp1 = Cp1) With My € Sep(z) and My— C Ess(z(x, = ¢,)). The rest of the proof that
%, 1S an essential conjugate of M in z and f is left to the reader. [

The improvement of Theorem 2.10 consists in the fact that we might choose the variable «;
before the choice of the subfunction g, f > Mag.

A natural question to ask is there an “universal” essential conjugate x; € Ess(f)\M for all
maximal separable subsets of M, i.e. is it possible to choose the variable in Theorem 2.12 before
the choice of the set M; € Max(M, f)? The next example shows that the answer is negative.

Example 2.13. Let £ =2 and f = x1204x2 @ x229x6 @ x3x5x0. Clearly M = {x1, x2, x3}
& Sep(f)and Max(M, f) = {{x1}, {x2}, {x3}}. Also, it is easy to verify that x5 & Ess(f (x2
=0,x3=0)), x5 € Ess(f(x1 =0, x3 = 0))and x4 & Ess(f (x1 = 0, x2 = 0)). The essential



conjugates of the maximal separable subsets are: {x4, x5} of {x1}, {x4, 46} of {x2}, and
{5, x5} of {x3}.
Let us turn our attention to the following:

1. Each simple minor obtained by collapsing pairs of variables belonging to distinct
maximal separable subsets of M depends on possible maximal number of essential
variables. Thus we have ess(fo1) = ess(fs1) = ess(fs—2) = 5. For instance,
foe1 = 212422 ® 21% %6 D 23550,

2. The simple minors obtained by pairs of essential conjugates essentially depend on
four variables, for instance, f5—s = x249x6 @ ¥325x.

Next, we turn our attention to relationship between essential arity gap and separable sets in
functions.

Theorem 2.14. Let f € p}. If gap(f) >2 then each non-empty set of essential variables is
separable in f.

Proof. Let M be an arbitrary non-empty set of essential variables in f. We prove that
M esep(f) by considering cases. The theorem is given to be true if # < 2. Next we
assume n > 2.

Case 1: gap(f) =2, n = 3and k=2

fn=3 then Theorem 3.2 [13] implies that f = 24(:0x} @ x1x3) @ &« or f = ac"‘(xox2
€Bx1x2) Dxg )(xlxz @ x149), where a, p € {0, 1}. Clearly, each set of essent1a1 variables in f
is separable.

If n =4 then according to Theorem 3.3 [13] we have f = x3.g(x1, x2, x3) D x}.h(x1,
xg, x3), with g = 22(2%x) @ xlx}) @ 2 “ (20x) @ x14D), and /o = 2, (4030 @ xlwd) @ 1% (0
xb @ alxd), for some a, a€ {0, 1} (here —(a) means negation of a). Clearly, each set of
essential variables in fis separable.

Let #2>5From Theorem 3.4 in [13] it follows that

f= & A -xlorf= @ Ay
o @ ®ay=1 @ @ ap=0
Thus we have Ess(f) = X,. Suppose, with no loss of generality that M = {x1,---, x5},

m < nand
f — (a3} x‘lll e xzﬂ.
o @ Sa=1
Letcy, -+, cn€Zpand 1 @ -+ ® ¢, = 1. Wecanpickg = (%11 = ¢ps1, -+, X0 = ¢,) and
7= Cpi1 @ - - D cy Assume without loss of generality that » = 1. Then we have
g= @ xflll . x;m.
@@ @a=1
It must be shown that M = Ess(g). By symmetry, it is enough to show that x; € Ess(g). Let
Coy €Ly with o ® -+ @ ¢y, = 0. Then we have

g(07027"'7cm) =1 and g(17627"'7cm) :Ov
which proves that x; € Ess(g).
Case2: gap(f) =2,2 <k <n

Theorem 2.1 [18]implies that f is a symetric function which essentially depends on all of its
nvariables. Theorem 4.1 [17] states that: If f is a symmetric function with non-trivial arity gap,
then each set of essential variables in f is separable, which completes the proof of this case.

Complexity of
discrete
functions

115




ACI
17,1

116

Case 3: gap(f) = 2,n = 3and k=3,

Lemma 5.1 [16] states that if f € G%k then ess(fi;) = 1for all 7,5 € {1, 2, 3},7+#7, which
shows that each subset of X3 is separable in f.

Case 4: gap(f) = 2,4<n<k

If fis a symmetric function then we are done because of Theorem 4.1 [17] and if fis not a
symmetric function then according to Theorem 4.2 [16] there exist #—2 variables y;,
o 9,_, €X, such that f = h@gwhere Ess(h) = {y;,---,¥,_,} and g€ G, Moreover
Gi—; = 0 for all 1<4,j<n with 7#j. Now, the proof can be done as in Case 6:, for p = 2,
given below.

Case 5: gap(f) = n,3<n<k
From Theorem 3.1 [16] it follows that fis presented in the following form:
f:do[ ® X"] ® L ® a;'xﬂ] 8]
aeEqZ 1eDst

where
Egy={rez|3ij, 1Si<j<s,y; =y}, _
y=r1 7, X =24 af and Dis = Z;\Eg;, for s, s> 2. Moreover, there exist at least

two distinct numbers among a, € Z, for r =0,1,--- k" — 1.
It is easy to see that Ess(f) = X,,. We have to show that M € Sep(f). Without loss of
generality let us assume that M = {x1,- -+, %}, 1<m<n.If m = nor m = 1 we are clearly

done.Let1 < m < nandletr = 3" B;#"~ be anatural number such that @, # 0. Then we have
g :f(xn1+1 :ﬂm+17"‘;x11 :ﬂn) = ao[ D X5:| D [ D ajxa:|>
SeEqy

it aeDllskm

wherej = S, 0;F" " witho; = p;fori = m + 1, - -, n, and there are at least two distinct
numbers among ;. Clearly, g essentially depends on all of its variables, ie. Ess(g) = M and
hence M € Sep(f).

Case6gap(f) =p,2 < p<mandd<n <k

According to Theorem 3.4 [16], there exist functions % and g, such that /' = & @ g, where
g €G!, and ess(h) = n — p. Without loss of generality, let us assume that Ess(k) = {x1,- -,
Xn—p }- Moreover, gij = Oforalliandj, 1 < j <i< n

Clearly, Ess(f) = X,,and according to Theorem 3.1 [16]and the Eq. (1), given in Case 5, the
function g can be represented as follows g = u @ v, where

U= L@ arxﬂ} and v = ao[ ® x“]. )
EDiSZ aeEqZ
Letx;, x; € X, i > j, be two arbitrary essential variables in g. Say i = nandj = n — 1, for
simplicity. Then we have

ui—; =0 and v;; = ag { ® ﬁé} = ay. &)
sezi~?

Since g;; = Oforalliandj,1 < j < i<nwehavev,.; = ap = Oandhencev = 0,and g = .
Let M be a set of essential variables in f. Note that M € sep(g), according to Case 5 and if
M n Ess(h) = @ then M e sep(f).

We have to prove that M is separable in f in each other case. We argue by induction
on 7-the number of essential variables in fand g.

Let #n = 4. This is our basis of induction.



First, let |M| = 2and P = 2.Clearly, if M C Ess(h) then (2) and (3) show that M € Sep(f).
Next, let us assume that M = {x1, x3} and Ess(h) = {x1, x2}. Let c2,c4 €2, be two
constants, such that £ss(t;) = {x1, x3}, where ) = g(x3 = ¢3, 44 = ¢4). Clearly, x3 € Ess(f),
where f1 = f(x2 = ca, 44 = ¢4). Let Iy = (g = ¢2). If x1 € Ess(y) then x; € Ess(fi) and
obviously, M € sep(f). If x1 € Ess(hy) then fi = hy(x1) @ # (41, x3). According to (2) and (3)
there is a constant c3 = Z, such that Ess(#1(x3 = c3)) = @. Hence x1 € Ess(f1(x3 = ¢3)) and
M e sep(f), again.

Second, let |[M| = 3and P = 2, and Ess(h) = {x1, x2}.

Let x; € M. Then there isa constant ¢; € Z, such that xy € Ess(hg), where o = h(x1 = ¢1).
Thus, (2) implies that {xg, 3,24} = Ess(f2), where fo = f(x2 = ¢1) and M € sep(f), again.

Let x4 & M. Then there is a constant dy € Z, such that x3 € Ess(f), where to = g(x4 = da).
Clearly, x3€FEss(f3), where f3 =f(xy =ds). According to (2) and (3), we have
f3 = (x5 =dy) = h(x1,x2) D ay, which shows that {x1, x2,x3} = Ess(f3) and hence
M e sep(f).

One can argue similarly if P = 3and n = 4.

Let us assume that for some natural number [,/ = 4 ifn <[,2 < p,l < kandf e GZ .
then each set of essential variables in fis separable.

Let us pick # = [ According to Lemma 2.4 there is a strongly essential variable x;,
1 < ¢ < ling,and let¢; € Z; be a constant such that X;\ {x;} = Ess(g(x; = ¢;)). Without loss
of generality, let us assume that 7 = /and ¢; = £ — 1. Using (2), it is easy to verify that

h=etn=k-1=| @ b¥|. @
peDis,
where the coefficients b, linearly depend on ay, ..., ay_jand ¥’ = x/]’ t. xf -

By p = 2 it follows that we may reorder the variables in % such that
Ess(h) = {x1,...4p} with]—p < -1.

Then we can pick f; = f(x; = k— 1) = h @ t3. It must be shown that Ess(fy) = Xj_;. Since
p = 2itfollows that N = Ess(fy)\Ess(h) # @. Next, using (2) one can show that N € Sep(t3)
and N € Sep(fy). According to (3) we have

N nEss(fi(x; =k—1)) — @,

for all 7 =1, ,[—p. Now, Lemma 25 implies N U {x1,...,%_,} € Sep(fs). Hence
Ess(fy) = x-1. Accordmg to (4) it follows that f; € Gl 1

Therefore the inductive assumption may be apphed to f1, yielding M € Sep(fs), and
hence M esep(f). O

3. Decision diagrams of functions

3.1 Ordered decision diagrams

Intuitively, it seems that a function f has the maximal complexity under the subfunction
reduction if all its sets of essential variables are separable, because the variables from
separable sets remain essential after assigning constants to other variables (see [15]). For
example, when assigning Boolean constants to some variables of a Boolean function, then a
natural complexity measure is the size of its Binary Decision Diagrams (BDDs), which also
depend on the variable ordering (see[1]). Each path from the root (function node) to a terminal
node (leaf) of BDD is called an implementation of f. The subfunction complexities
mp(f),sub(f)and sep(f) of all implementations, subfunctions, and separable sets,
obtained under all #! variable orderings of z-ary Boolean functions for 7,7 <5, are studied
and calculated in [15].

Example 3.1. Let f = x1x) @ x)x5 @ xox3 @ x2x4(m0d 2) and g =21 D 12D 13D x4
(mod2) be two Boolean functions. Figure 1 presents their BDDs under the natural
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Figure 1.
Binary Desicion
Diagrams.

A) f =212 ©2l23 @ 203 © 1074 B)g=21 ®xo®as®ay

variable ordering x7; x2; x3; 44. All sets of essential variables in g are separable, whereas the
sets (x1,%2) and (xs3,x4) are inseparable in f. Clearly, f has non-trivial essential arity gap
and f € G, ,. Note that the implementations (longest paths) in Figure 1 A) consist of three
edges, but n Figure 1 B) of four edges, which shows that the BDD of the function g is
extremely complex with respect to the number of its subfunctions and separable sets,
whereas the BDD of fis simpler.

3.2 Minor decision diagrams
Next we introduce a new graph-based presentation of the k-valued functions, namely by the
minor decision diagrams.

The minor decomposition tree (MDT) of a function, consists of the node, labelled f —
called the function node and nodes labelled with minor names, called the nternal (non-
terminal) nodes, and the rectangular nodes (leaves of the tree) called the terminalnodes. The
terminal nodes are labelled with the same name of a function (atomic minor) from P}
(according to Theorem 2.3). The terminal and non-terminal nodes in the MDT for a function
£, essentially depending on 7 variables, are disposed into maximum 7 — 1 layers of the tree.
The i-th layer consists of names of all the distinct minors of order ¢, fori =1,..., n—1
Figure 2 presents the MDT of the function f = xlxg @ X(I)X3 @ X243 B Xox4, given in
Example 3.1.

We introduce the minor decision diagrams (MDDs) for k-valued functions constructed by
reducing their minor decomposition trees MDTSs). Let f be a k-valued function. The munor
decision diagram (MDD) of f is obtained from the corresponding MDT by reductions of its
nodes and edges applying of the following rules, starting from the MDT and continuing until
neither rule can be applied:

Reduction rules

. If two edges have equivalent (as mappings) labels of their nodes they are merged.

« If two nodes have equivalent labels, they are merged.

Example 3.2. Let us build the MDDs of the functions from Example 3.1, namely
f= x1x2 ® x(l)xg @ x9x3 B x2x4(mod 2) and g = x1 @ x2 @ &3 D x4 (mod 2) using the reduction
rules and their MDT's.

Figure 3 A) shows the MDD of the function f, and Figure 3 B) presents the MDD of g. The
identification minors of f and g are:



Complexity of

Joc1 = ficz = 11 B a3, Foc1 = 2125 @ 11202 ® Koy,

discrete
frar=fics=lfclico=lc2ls f3c1 = fici =S functions
Jico = xlxg GBx(l)xg EBxeg.
Gij =821 = X3 D Xy, for1< j<i<4 and,
lg21l43=0.
119
Each edge ¢ = (v1, v2) in the diagram is supplied with a label /(v;, v2), (written as bold in
Figure 3A), which presents the number of the merged edges of the MDT, connecting the nodes
vy and vy iIn MDT.
If two nodes in MDT are connected with unique edge then this edge is presented in MDD
without label, for brevity. For example, such pairs are (f, fi—2), (51, f2—1) and (fo—1, 0).
The label of the edge (f, f3—1) is 3 because there are three identification minors, namely
f31, frc1 and f3o of £ which are equivalent to f3; (see Figure 2).
In a similar way we count the labels of the edges in Figure 3 B).
;Hl 1 ® 13 31 @
2¢1
P @129 @ (31 © q) o)L 0]
s
32 91
(975 @ (71 ® .172).@0) 41 @
Figure 2.
MDT of f = x2) @)
X3 D X2X3 @ XXy

43

31 @ (mod 2).
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Figure 3.
Minor decision
diagrams.

&

[0]

A) f =220 © 2023 D 1023 B 1074 B)g=21®xo D3 Dy

So, the MDD of f is an acyclic directed graph, with unique function node and according to
Theorem 2.3, with unique terminal node. Clearly, the MDD and MDT are uniquely determined
by the function f.

3.3 Complexity and equivalence relations with respect to minor reduction
Many of the problems in the applications of the 2-valued logic are compounded because of the
large number of the functions, namely #*'. Techniques which involve enumeration of
functions can only be used if % and # are trivially small. A common way for extending the
scope of such enumerative methods is to classify the functions into equivalence classes by
some natural equivalence relation.

Let S, denote the symmetric group of all permutations of the non-empty set A, and let S,,,
denote the group Syy..... ) for a natural number m, m=1.

A transformation y : P! — P} is an n-tuple of k-valued functions y = (g1,...,84), 81 €
Pp.i=1,...,n, acting on a function f = f(x1...x,) € P} as follows y(f) = f(g1,...,8n)-
Then the composition of two transformations w and ¢ = (% ... ) is defined as follows

v = (g ...80), - ha(gr...8.)).

The set of all transformations of P} is the universal monoid €, with unity - the identical
transformation € = (x; ... x,). When taking only invertible transformations we obtain the
universal group C; which is isomorphic to the symmetric group SZ;z The groups consisting of
invertible transformat1ons of P} are called transformation groups (sometimes termed
permutation groups).

Let ~, ~ C P} X P} be an equivalence relation on the algebra P}. Since P}/ is a finite
algebra of k-valued functions, the equivalence relation ~ makes a partition of the algebra in a
finite number equivalence classes.

A mapping ¢ : P} — P}} is called a transformation preserving ~if f ~ ¢(f) for all f € P}.
Taking only invertible transformations which preserve ~, we get the group G. of all
transformations preserving ~. The orbits (also called G.-types) of this group are denoted
byPl, ceey Pr.

Our aim is to classify functions from P} into equivalence classes by ~. Thus we have to
calculate the number 7 of G.-types, to count the number of functions in different equivalence
classes, i.e. compute the cardinalities of the sets P;, ..., Prand to create a list of functions
belonging to different G.-types.



Let f € P} and let nof (f) denote the normal form obtained by applying the reduction > on
/. According to Theorem 2.3, the normal form nof (f) is unique and nof (f) € PL. Thus, our
first natural equivalence is defined as follows:

Definition 3.3. Let f and g be two functions from P;. We say that f and g are
nof-equivalent (written f=,,,rg) if nof (f) = nof (g).

The transformation group induced by nof-equivalence is denoted NF}. The
transformations in NF}; preserve ~,,, i.e. nof (g) = nof (y(g)) for all g € P} and y € NF}.
Since the atomic minors (labels of terminal nodes in MDD) depend on at most one essential
variable, it follows that the number of the orbits of NF} is equal to |P}| = k*. These
transformations involve permuting variables, only (see Theorem 3.9, below).

By analogy with the ordered decision diagrams [1,15], we define several equivalence
relations in P}/, which allow us to classify the functions by the complexity of their MDDs.

The “scalability” of the diagram is an important measure of the computational complexity
of the function. We are going to formalize this problem and establish a method for
classification of functions by the minor complexities.

First, the number mny(f) of all the minors of a function f1is a complexity measure, which
can be used to evaluate the MDD of f. Namely, it counts the size (number of terminal and non-
terminal nodes) of the MDD. M. Couceiro, E. Lehtonen and T. Waldhauser have studied
similar evaluation, named “parametrized arity gap” in [5,6], which characterizes the
sequential identification minors of a function.

Second, we are going to classify functions in finite algebras under the complexity
measures which count the number of minors and the number of ways to obtain these minors.

Definition 3.4. Let f € P}} be a k-valued function. Its emir-complexity cmy(f) is defined as
follows:

@emr(f) = Lifess(f) <1;
(iemr (f) = 2ifess(f) = 2;

(111)(,‘1’}41’(]“) = Zj<i‘ X; ,xjeEss(f)cmrﬁle]‘) if €SS(f) =3.

The minors f;._; with i < jare excluded because f;._; = f;;. The minor complexity cm» can be
inductively calculated using the MDDs of the functions as it is shown in Example 3.5, given
below. We start to assign cmr-complexity equals to 1 for the terminal node, which is labeled
by the minor of “0” of highest order according to (i) of Definition 3.4. Next, we inductively
calculate the cmr-complexity of the minors of f with lower order, applying (ii) and (iii) of
Definition 3.4.

Example 3.5. Let us count the cmr-complexity of the function f from Example 3.1 , using
the identification minors of f obtained in Example 3.2 and MDD of f, given in Figure 3 A).
There is two simple minors (fo.1and fs3) of order 2 and four simple minors of order 1. Thus
we have cmr (for1) = cmr(fyes) = 2, cmr(fze1) = emr(fye1) = cmr(faeo) =1%24+2 %1
= 4and emr(fyz) = 3 * 2 = 6. According to Definition 3.4 we have cmr(f) =2*2+1*6
+3%4=22

In a similar way from the MDD of g in Figure 3 B) we obtain cmr(g) = 6 * 2 = 12.

Definition 3.6. Let fand g be two functions with ess(f) = n, n=0. We say that fand gare
cmr-equivalent (written f~,,,,9) iff:

) n<l=ess(f) = ess(g);

(i) n=2= there exists a bijection o : Ess(f) — Ess(g), such that fi_;~u,grs Where
% = o(x;)and xs = o(x;), for all 7, ¢, with x;, x; € Ess(f), 7 < i.
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Let CM} denote the transformation group preserving the equivalence ~,,, ie. y € CM]' if
and only if y(F) = £=>f~omg.

The nof-equivalence is independent on the cmr-complexity of functions, defined by
reduction via minors. For example, the functions f =0 and g = x(l’xz eaxlxgxg(mod 2) are
nof-equivalent, but they are not cmr-equivalent.

Next we define another equivalence based on the number of minors (size of MDD) in a
function.

Definition 3.7. Let fand g be two functions from P;. We say that fand g are mnr-equivalent
(written f .8 if mnr,,(f) = mnr,,(g) for all m, O<m<ess(f) —

Clearly, if ess(f)<1 then Mnr(f) = @. Hence, if ess(f) = ess(g) <1 then f~~,,,g. MN}
denotes the transformation group which preserves the equivalence ~,,,,,,.

Note that f~,,,,gorf~ e ¢ do not imply ess(f) = ess(g), which can be seen by the
following functions: f = ¥%x}(mod 3) and g = x%xx%(mod 3). Clearly, fo,g and f=,,rg,
but ess(f) = 2, and ess(g) = 3.

Theorem 3.8.

O ~cmrg = cmr(f) = cmr(g);

) f~omg = [ &

Proof. We argue by induction on the number 7 = ess(f).

If ess(f) <2 (basis for induction) then we are clearly done. Assume that (i) and (i) are
satisfied when 7 < s for some natural number s, s > 2. Let n = s and f~,,,,g. Then our
inductive assumption implies

emr(f) = Zcmr(fi‘_]-) = Zcmr(gm_v) = cmr(g),
j<i u<v
and mnyy, (fie;) = mnyy(Su—y), where u = z(i) and v = #(j) for some 7€ S, and m =0,

Ln=1 0O

Thus, the complexity cmr(f) is an invariant of the group CM}}, and the complexity mnr (f)
is an invariant of the group MN}.

It is naturally to ask which groups among “traditional” transformation groups are
subgroups of the groups NFy! or CM}! and which of these groups include NF}!, MN}! or CM}!
as their subgroups.

Let o : Z;, — Z, be amapping and let y,, : P} — P} be a transformation of P} generated by
o as follows y,(f)(@) = o(f (a)) for alla e Z}'.

Theorem 3.9. The transformation v, preserves ~y, if and only if o is a permutation
of Zp, k> 2

Proof. Let 6 : Z, — 7.

First, let o be a permutation of Z,. Let f € P} be an arbitrary function. If ess(f) <1 then
ess(y,(f)) = ess(f) and we are clearly done. Let ess(f) = ess(g) =n=>2 and let 7 and
7 be two arbitrary natural numbers with 1<j < /<. Then we have

[l//a(f)}iej(xh ceey xn) = G(fz’<—j X1, ooey xn))~

Since o is a permutation, it follows that fi—j~em [/, (f)];._; which shows that =y, (f).

Second, let 6 be not a permutation of Z;. Hence, there ex1st two constants ¢; and a, from 7,
such that @1 #a and o(a1) = o(az). Let b= (b, ..., b,) €Z, n=>2 be a vector of
constants from Z;. Then we define the following function from Py:

f(xl,...,xn):{“l if xm=bfori=1,...n

as otherwise.



Clearly, Ess(f) =X, and the range of f consists of two numbers a; and as. Then
o({a, az}) = {o6(a1)}, implies that w,(f)(c1, ..., ¢x) = o(a) for all (c1, ..., c,) €Z].
Hence, Ess(y,(f)) = @ which shows that f—~,,y,(f) and y, ¢ CM}. O

We deal with “natural” equivalence relations which involve variables of functions. Such
relations induce permutations of the domain Z of the functions. These mappings form a
transformation group whose number of equivalence classes can be determined. The
restricted affine group (RAG) is defined as a subgroup of the symmetric group on the direct
sum of the module Z}' of arguments of functions and the ring Z, of their outputs. The group
RAG permutes the direct sum Z; 4- Z, under restrictions which preserve single-valuedness of
all functions from P}’ [8,10].

In the model of RAG an affine transformation y operates on the domain or space of
inputs x = (x1, ..., x,) to produce the output y = xA @ ¢, which might be used as an
input in the function f. Its output f (y) together with the function variables 1, ..., x, are
linearly combined by a range transformation which defines the image g = y/(f) of f as
follows:

g(x) :W(f.)(x) :f(Y)®alxl® @anxn@d: (5)
f(xA®c)®a*ad,
where d and @; fori =1, ..., nare constants from Z,, ce Z,anda = (a1, ..., a,) €Z].

Such a transformation belongs to RAG if A is a non-singular matrix.

We want to extract basic facts for several subgroups of RAG which are “neighbourhoods”
or “relatives” of our transformation groups NF}!, CM}' and MN}.

First, a classification occurs when permuting arguments of functions. If z € S,, then racts
on variables by: z(x1, - - -, %) = (%z(1), " -, Xx(n))- Each permutation generates a map on the
domain Z;'.

For example the permutation z = (1,2,3) generates a permutation of the domain
{0,1,2}° of the functions from P3. Then we have 7 : 001 — 010 — 100 and in cyclic decimal
notation this permutation can be written as (1,3,9). The remaining elements of Z; are
mapped according to the following cycles of # in decimal notation - (2,6, 18)(4, 12 10)
(5,15,19)(7,21,11)(8, 24, 20) (14, 16,22)(17,25,23). Note that each permutation from S
keeps fixed all & constant tuples from Z}'. In case of Zg’, these tuples (0,0,0),(1,1,1) and
(2,2,2) are presented by the decimal numbers 0, 13 and 26.

S” denotes the transformation group 1nduced by permuting of variables. Boolean
functlons of two variables are classified into twelve S&-classes[8], as it is shown in Table 1. M.
Harrison has determined the cycle index of the group S3. Using Polya’s counting theorem he
has counted the number of equivalence classes under permuting arguments (see [8] and
Table 3, below).

The subgroups of RAG, defined according to (5) which are “relatives” to the groups
NF}!, CM}! and MN)! are determined as follows: RAG when A-non-singular; CF}' when
A=Ia=0,c=0;LF when A=1,c=0,d =0, CA} when A=1,a=0,d =0 LG}
c=0,a=0,d=0; S when A=P,c=0,a=0,d =0, where P denotes a permutation
matrix, Iis the identity matrix, bandc are #-dimensional vectors from Z}' and d € Z,.

It is naturally to ask which subgroups of RAG are subgroups of N}, CM}' and MN},.
Theorem 3.8 shows that CF} and S}} are subgroups of MN}'. Clearly, Sy <NF}.

Theorem 3.10.

W CFr<C (i) Sy <C (iii) S} <NF};
(iv) NF’% <RAG ) CM’H <RAG; (Vi) LG}~ < MN;
(vii) CA”ﬂ <MN}; (viii) CA”—| <NF}; (ix) LG;—~ < NF};

) CM”ﬂ <NF; (xi) NF’% <MN".
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ACI Proof. (i) Follows from Theorem 3.9.(ii) and (iii) — Let # €S, and let ¢, : P} - P} be a
17.1 transformation of P} defined as follows ¢, (f)(a1, -, @) = f(a@zq), -, @(n)) for all
’ (a1,---,a,) €Z]. We have to prove that the transformation ¢, preserves the equivalence
relations ~ gy, 2 and ==, for all € S,,. It suffices to show that ¢, preserves ~,, and
~,s. Let f € P} be a function and let us assume Ess(f) = X,,n>2. It must be shown that
f~omwg and fo,rg, where g(a1,---,a,) = f(w(a1),---,n(ay)) for all (a1,---,a,) €Z}.

124 Since 7 is a permutation, we have

f(ala e ’aﬂ) :g(”71(01)> to 7”71(%1))’

for all (a1, -,a,) €2 which shows that f~,,,g and hence, f==,,¢,(f). Since nof (f) =
f (i, -, x)andnof (f) = f(%zq), - - - Xa(i)), it follows nof (g) =nof (g) and f~,,rg.(iv) and (v)
— Let f=x1®x®x3(mod 3) and g = x14, B x1%3 D xox3(mod 3). Then we have
Jiej = 2% ® x,y(mod 3) and g;; = 2xjx,, ® x;x;(mod 3) where {i,j,m} = {1,2,3}. Clearly,
ficj_p = &icji_,, = 0, and hence f=~,g and f~,,g. One can show that there is no
transformation w € RAG, defined as in (5), for which g =w(f). Consequently,
CM}—~ < RAG,NF}-< RAG and MN}—- < RAG(vi), (vi)), (vii), (ix) and (xi) — Let
S = x0x} @ x0xix3(mod 3) and g = x{x} @ x3x}x} (mod 3) be the functions from Pj. Let

100 0
0100
A=10 01 0
000 2

Then clearly, f(x) = g(Ax) and hence, f and g belong to the same equivalence class under
the transformation group LGj. Let ¢ = (0,0,0,1). Then we have f(x) = g(x.I& ¢), which
shows that fand g belong to the same equivalence class under the transformation group CA%.
One can show that fz,,g Example 3.5 shows that f-zv,,.g Consequently,
NF}— < MN}!,LG}— < MN} and CA}— < MN}'. Theorem 3.8 shows that NF}'—< CM},
LG~ < CM} and CA7— < CM].(x) - Let us pick f = 2%x3(mod 2) and g = x1x2(mod 2).
Clearly, f~ g, but nof () = = =x = nof (g). O

So, Theorem 3.10 summarizes results which determine the positions of the groups
NF}!, CM} and MN};, with respect to the subgroups of RAG. It is well-illustrated by Figure 4,
in the case of Boolean functions.

4. Classification of Boolean functions by minor complexities
Table 2 shows the four classes in P22 under the equivalence ~,,,. The ~,,-classes are
represented as union of several classes under the permuting arguments, according to
Theorem 3.10 (ii), which can be observed in Table 1 and Table 2, given below.

The number of types under permuting arguments, is an upper bound of the number of
equivalence classes induced by the relations ~,,¢, g and o, (see Figure 4).

Table 1.

The twelve classes in 0,0

Pg under the (0}, ), 0 [xgxz, xlng . [x1, xZ]b
permutating of b © 2], [0 @ x5, [0 ® 2122, x5 D x1%2], [x1 ® 93],

variables. [x(l] @ xlxg], [x122], [x(f> xS]., (11




IDENTITY MAP

In Table 3 the columns named SBj and SPj are calculated in [15] and they present
the number of classes under the complexities, determined by the number of
subfunctions and separable sets in the functions. It is surprising that for #<3 these
columns are same as the columns CM} and MN}, i.e. the number of classes are the
same, but these classes are very different as sets of functions, determined by these
complexities.

Figure 4 presents the subgroups of RAG and transformation groups whose invariants are
subfunction, and minor complexities of Boolean functions of n-variables. According to
Theorem 3.10 the group CM} has three subgroups from RAG, namely: S} - the group of
permuting arguments, trivial group consisting of the identity map, and CF3- the group of

[0,1] [x?xz,xw&m Dx2, 11 Gaxgﬁx’f @M@JCS @ x142],

o1, 22, 49, 29 [rxs, 51 @, o) @ 2169, 205

Complexity of
discrete
functions

125

Figure 4.
Transformation
groups in P.

Table 2.

The four classes in
PZ under the
cmr-complexity.

N s oy MN SBy Spy
1 4 2 2 2 2
2 12 4 3 4 3
3 80 11 5 11 5
4 3984 * * 74 11
5 37333248 * * * 38

Table 3.

Number of equivalence
classes in Pj under
transformation groups.
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complementing outputs. The groups NFj and MNy are not subgroups of any subgroup
of RAG.

Next, we turn our attention on classifying the functions with respect to their cms-
complexity. This classification is based on the exhaustive Algorithm 1, given below.

Table 4 presents a complete classification of the Boolean functions of tree variables by
the minor complexities ey and mnr. If we agree to regard each 2°-tuple as a binary number
then the last column presents the vectors of values of all ternary Boolean functions in their
table representation with the natural numbers from the set {0, ---,127}. According to
Theorem 3.9, if a natural number z, 0 <z < 255, presents a function f which belongs to a cm7-
class then the function f presented by 255 — zbelongs to the same class. Thus the catalogue
contents the numbers <127, only (see the last column in Table 4). These numbers represent
the functions which preserve zero, ie. the functions f for which f(0,0,0) = 0. This
classification shows that there are eleven equivalence classes under ~,,, and five classes
under 2,

Theorem 3.8 shows that each mnr-class is a disjoint union of several cimr-classes. Thus the
first mmnr-class consists of all the functions which belong to the first and the second cmr-class
(see fifth column in Table 4). The second mnr-class is equal to the third cmr-class. The fourth
and the fifth mnr-classes are unions of three cmr-class, namely: sixth, seventh, and eight, and
ninth, tenth, and eleventh, respectively.

The main data structure which describes the nodes in the MDD of f is represented by a
record declared as follows:

type minor=record
ess: 1..n;
k-1 1:

’

val: 0..k
end;

The first field, named ess presents the number of essential variables in the minor
(located on the corresponding node) and the second field val is a natural number whose
k-ary representation is the last column B of the truth table (of size ¥'X(n + 1)) of
the minor.

Table 4 presents classification of ternary Boolean functions under the equivalences ~,,,
and ~,,,,, including the catalogue of the equivalence classes (last column). Let us choose a
natural number belonging to the seventh column of Table 4, say 24. It belongs to the row
numbered 6. The binary representation of 24 is 00011000, because 24 = 1*2* + 1*23 Hence,
the function f corresponding to 24 is evaluated by 1 on the fourth and fifth miniterms,
namely x)xox5 and x1x923. Consequently, f = xxpx3 @ 212943 (mod 2). Then we have
frer = fae1 = 0 and fzp = 2% @ x1%3 (mod 2). Clearly, cmr(f) = 4, which is written in
the third cell of the sixth row. The MDD of f is shown in the second cell. The cmr-
equivalence class containing f consists of 18 functions, according to the fourth cell of the
sixth row and the mnr-equivalence class of f contains 108 functions (see whole fifth column
of the table). The function x1x2xg(m0d 2) is representative for this class (sixth cell). The
numerical list of the functions from this equivalence class is given in the last seventh cell of



Table 4. The record of the function f is presented as follows f.ess=3 and f.val=24,

where k£ = 2 and B= 00011000.

Algorithm 1 - Counting cmr(f)

1:

@

type minor=record
ess: 1..n;

val: 0.1~ 1;
end;
var f:minor;
cmr:integer;
functioncetminor(g:minor; i,j:integer): minor; >
Getting minor
var A,H: array[l,.kN, 1..N] of integer (mod k);
B,L; array[l..kN] of integer (mod k);
h: minor;
n:=g.ess;
Create truth table AB of g;
Create truth table HL of hi=g ; j; >From the
table AB
Calculate - h.ess and h.val >From
the table HL
GetMinor:=h,
end function;
functioncompLexiTYg: minor:integer; >Counting
complexity
n:=g.ess;
if n>2
forj, 1<j<n-1do
fori, j+1<i<ndo
h:=GetMinor(g,i,j);
Complexity:=Complexity+Complexity(h);
end for
end for
else >Basis of recursion
ifn=2 then
Complexity:=2
else
Complexity:=1
end if
end if
end function
BEGIN >Main program
Read (k; f.ess; f.val);
cmr:=Complexity(f);
Print cmr;

END.
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cmr-class

Functions

Repres.

Table 4.

Minor classification of
ternary Boolean
functions.

| MDD A per class | ™™ | function Catalogue
1 const 1 2 0 0
2 | var 1 6 |8 0 71 15,51,85
7 10,12,34,48,60,68,
3 I . 2 18 | 18 1 2129 80,90,102
If 35,17,
4 T 2 12 T122 63,95,119
f
3 xr1 D 29 43,77,
5 .é 3 8 |20 1 Brs 105,113
I
> . 2,4,8,
2| priay 16,24,32,
6 0 4 18 12070 | 36,64,66
T 6,18,20,26,28,38,
.>2 . 40,44,52,56,70,72,
1T .0
2 T1THT3 74,82,88,96,
7 0 5 36 ®r1229 | 98,100
14,22,30,42,46,50,
5 f 54,58,62,76,78,84,
129 86,92,94,104,106,
x129 108,110,112,114,116,
8 0 6 54 | 108 | 2 Griza2) | 118,120,122,124,126
7,11,13,19,21,23,
I 31,35,41,47,49,55,
2>Wc2 59,69,73,79,81,87,
T122 93,97,107,109,115,
9 T 4 50 ®radrs | 117,121
ik 9,27,29,33,39,45,
>zx1x2 53,57,65,71,75,83,
T1X2T3 89,99,1017
10 1 5 36 or2dxd | 111,123,125
f
3 1,25,37,
>WC2 61,67,91,
11 - 6 16| 102 |2 Ti1zexs | 103,127




5. Conclusion

The transformation groups whose invariants are the minor complexities have only three
subgroups among the groups in RAG, namely trivial group (identity map), S and CF},
whereas the groups whose invariants are the subfunction complexities have three
subgroups more (see [15]). One of motivations to study the group NF} is that the
reductions are inexpensive and the number of classes is much smaller than the number of
classes under the subgroups of RAG, because the order of NI is so large. As mentioned,
the ?un;ber o}f equlvalence classes under NI} equals to B~ Hence the order of NF}! is equal
to K /K = k "

The most complex functions with respect to separable sets [15] are grouped in the largest
equivalence class. J. Denev and 1. Gyudzhenov in [7] proved that for almost all the k-valued
functions all the sets of essential variables are separable. Similar results can not be proved for
the minor complexities. For example, in P the most complex functions belong to the class
numbered as 11 (see Table 4), which consists of 16 functions. This class is not so large. It
presents 1/16 of the all 256 ternary Boolean functions.
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