
Minor complexity of
discrete functions

Slavcho Shtrakov
Department of Computer Science, South-West University, Blagoevgrad, Bulgaria

Abstract
In this paper we study a class of complexity measures, induced by a new data structure for representing
k-valued functions (operations), called minor decision diagram. When assigning values to some variables in a
function the resulting functions are called subfunctions, and when identifying some variables the resulting
functions are called minors. The sets of essential variables in subfunctions of f are called separable in f .

Weexamine themaximalseparablesubsetsofvariablesandtheir conjugates, introduced in thepaper,proving
thateachsuchsethasat leastoneconjugate.Theessentialaritygapgapðf Þof thefunction f is theminimalnumber
of essential variables in f which become fictive when identifying distinct essential variables in f . We also
investigate separable sets of variables in functions with non-trivial arity gap. This allows us to solve several
important algebraic, computational and combinatorial problems about the finite-valued functions.
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1. Introduction
The complexity of finite operations is still one of the fundamental tasks in the theory of
computation and besides classical methods like substitution or degree arguments a bunch of
combinatorial, and algebraic techniques have been introduced to tackle this extremely
difficult problem.

A logic gate is a physical device that realizes a Boolean function. A logic circuit is a direct
acyclic graph in which all vertices except input vertices carry the labels of gates. When
realizing n-variable k-valued functions the circuit is called the ðk; nÞ-circuit or Multi-Valued
Logic circuit (MVL-circuit).

To move from logical circuits to MVL-circuits, researchers attempt to adapt CMOS
(complementarymetal oxide semiconductor), I2L (integrated injection logic) andECL (emitter-
coupled logic) technologies to implement the many-valued and fuzzy logics gates. The MVL-
circuits offer more potential opportunities for the improvement of present VLSI circuit
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designs. For instance, MVL-circuits are well-applied in memory technology as flash memory,
dynamic RAM, and in algebraic circuits [4].

In this paper we investigate a method for reduction of finite valued functions, namely by
their identification minors. This method is a basic model of computing with MVL-circuits
corresponding to collapsing of some inputs in the circuits. We, also study the computational
complexity of this method and classify the functions in finite algebras for small values of k
and n under such complexity.

Computational complexity is examined in concrete and abstract terms. The concrete analysis
is based on models that capture the exchange of space for time. It is also performed via the
knowledge about circuit complexity of functions. The abstract analysis is done via complexity
classes, the classification of data structures, functions etc. by the time and/or space they need.

There are two key methods for reduction (computing) of the k-valued functions which are
realized by assigning constants or variables to their inputs. Then the resulting objects are:
subfunctions or minors, respectively. These reductions are also naturally suited to
complexity measures, which illustrate “difficulty” of computing as the number of
subfunctions, separable sets, and minors of the functions.

Another topic in complexity theory is to classify finite functions by their complexity such
that the functions are grouped into equivalence classes with same evaluations of the
corresponding complexities. Each equivalence relation in the algebraPn

k of k-valued functions
determines a transformation group whose orbits are the equivalence classes (see [8,10,12].
Using the lattice of Restricted Affine Groups (RAG) in [15] we have obtained upper bounds of
different combinatorial parameters of several natural equivalences in Pn

k for small values of k
and n. In the present paper we follow this line to study assigning (not necessarily unique)
variable names to some of the input variables in a function f. This method of computing
consists of equalizing the values of several inputs of f.

Section 2 introduces the basic definitions and notation of separable sets, subfunctions,
minors, arity gap, etc. An important result, namely if a function has non-trivial arity gap then
all its sets of essential variables are separable, complements this section. Section 3 examines
the ordered decision diagrams (ODD), minor decomposition trees (MDTs) and minor decision
diagrams (MDDs) of k-valued functions. In Section 3.3 we treat the minor complexities of
functionswith their classifications by the transformation groups. Section 4 is an illustration of
the results in the paper applied to the simplest case of Boolean functions. In the Appendix we
provide a classification of all ternary Boolean functions with respect to the minor complexity.

2. Subfunctions and minors of functions
A discrete function f is defined as amapping: f : A→Bwhere the domainA ¼ 3n

i¼1Ai and the
range B are non-empty finite or countable sets. Let X ¼ fx1; x2; . . .g be a countable set of
variables and let Xn ¼ fx1; x2; . . . ; xng denote the set of the first n variables in X. Let k be a
natural number with k P 2. Let Zk denote the set Zk ¼ f0; 1; . . . ; k− 1g. The operations
addition “⊕ ” and product “.” modulo k constitute Zk as a ring. An n-ary k-valued function
(operation) on Zk is a mapping f : Zn

k → Zk for some natural number n, called the arity of f. Pn
k

denotes the set of all n-ary k-valued functions and Pk ¼ ∪∞
n¼1P

n
k is called the algebra of

k-valued logic. It is well-known fact that there are kk
n

functions in Pn
k . For simplicity, let us

assume that throughout the paper we shall consider k-valued functions, only.
For a given variable x and α∈ Zk; x

α is defined as follows:

xα ¼
�
1 if x ¼ α
0 if x≠ α:

The ring-sum expansion (RSE) of a function f is the summodulo k of a constant and products
of variables xi or x

α
i , (for α; α∈ Zk) of f. For example, 1⊕ x1x

2
2 is a RSE of the function f in
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the algebra P2
3, with f ð1; 2Þ ¼ 2; f ð2; 2Þ ¼ 0 and f ¼ 1, otherwise. Any k instances of the

same product in the RSE can be eliminated since they sum to 0. Throughout the present
paper, we shall use RSE-representation of functions.

Let f ∈Pn
k and let varðf Þ ¼ fx1; . . . ; xng be the set of all variables, which occur in f. We

say that the i-th variable xi ∈ varðf Þ is essential in f, or f essentially depends on xi, if there exist
values a1; . . . ; an; b∈ Zk, such that

f ða1; . . . ; ai−1; ai; aiþ1; . . . ; anÞ≠ f ða1; . . . ; ai−1; b; aiþ1; . . . ; anÞ:
The set of all essential variables in the function f is denotedEssðf Þand essðf Þ ¼ jEssðf Þj. The
variables from varðf Þwhich are not essential in f ∈Pn

k are called inessential or fictive.
Let xi be an essential variable in f and let c be a constant from Zk. The function

g ¼ f ðxi ¼ cÞ obtained from f ∈Pn
k by assigning the constant c to the variable xi is called a

simple subfunction of f (sometimes termed a cofactor or a restriction). When g is a simple
subfunction of f we write f ≻ g. The transitive closure of ≻ is denoted c.
Subðf Þ ¼ fg j fc gg is the set of all subfunctions of f and subðf Þ ¼ jSubðf Þj.

Let fc g; c ¼ ðc1; . . . ; cmÞ∈ Zm
k and let M ¼ fx1; . . . ; xmg⊂ X with f ¼ gm ≻ gm−1 ≻

. . . ≻ g1 ≻ g, g ¼ g1ðx1 ¼ c1Þ, and gi ¼ giþ1ðxiþ1 ¼ ciþ1Þ for i ¼ 1; . . . ;m− 1. Then we write

fc c
Mg or equivalently, g ¼ f ðx1 ¼ c1; . . . ; xm ¼ cmÞ. For brevity, sometimes we shall also use

the notation fcMg or fc g.
We say that each subfunction g of f is a reduction to f via the subfunction relationship.

Definition 2.1. A non-empty set M of essential variables in the function f is called
separable in f if there exists a subfunction g, fc g such thatM ¼ EssðgÞ. Sepðf Þ denotes the
set of all the separable sets in f and sepðf Þ ¼ jSepðf Þj.

The theory of separable sets (TSS) has been developed in the work of many
mathematicians since the middle of the last century – K. Chimev [2], A. Salomaa [11], J.
Denev, I. Gyudzhenov [7], Sl. Shtrakov [3] etc. TSS is important to avoid any redundancies
when computing discrete functions and other structures as graphs [2], terms [14], etc.

Let xi and xj be two distinct essential variables in f. The function h is obtained from
f ∈Pn

k by identifying (collapsing) the variables xi and xj, if

hða1; . . . ; ai−1; ai; aiþ1; . . . ; anÞ ¼ f ða1; . . . ; ai−1; aj; aiþ1; . . . ; anÞ;
for all ða1; . . . ; anÞ∈ Zn

k .
Briefly, when h is obtained from f, by identifying the variable xi with xj, we write h ¼ fi←j

and h is called a simple identification minor of f. Clearly, essðfi←jÞ < essðf Þ, because
xi ∉Essðfi←jÞ, but it has to be essential in f. When h is a simple identification minor of f we
write f≻h. The transitive closure of ≻ is denoted c . Mnrðf Þ ¼ fh j fc hg is the set of all
distinct minors of f andmnrðf Þ ¼ jMnrðf Þj. Let h; fc h be an identification minor of f. The
natural number r ¼ essðf Þ− essðhÞ; rP1 is called the order of the minor h of f.

We say that each minor h of f is a reduction to f via the minor relationship.
Let Mnrmðf Þ denote the set Mnrmðf Þ ¼ fg j g ∈Mnrðf Þ & essðgÞ ¼ mg and let

mnrmðf Þ ¼ jMnrmðf Þj, for all m;m < n.
Let f ∈Pn

k be an n-ary k-valued function. The essential arity gap (shortly arity gap or gap)
of f is defined as follows

gapðf Þ ¼ essðf Þ � max
h∈Mnrðf Þ

essðhÞ:

Let 2#p#m. We let Gm
p;k denote the set of all k-valued functions which essentially depend

on m variables whose arity gap is equal to p, i.e.
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Gm
p;k ¼

�
f ∈Pn

k j essðf Þ ¼ m & gapðf Þ ¼ p
�
:

We say that the arity gap of f is non-trivial if gapðf ÞP2. It is natural to expect that the
functions with “huge” gap, have to be more simple for realization by MVL-circuits and
functional schemas when computing by identifying variables.

An upper bound of gapðf Þ for Boolean functions is found in K. Chimev [2] and A. Salomaa
[11], showing that gapðf Þ # 2. In [18] R. Willard also proved that if a function f : An

→B
depends on n variables and k < n, where k ¼ jAj then gapðf Þ # 2. It is clear that gapðf Þ # n.
Thus in all cases gapðf Þ # minðn; kÞ.

A complete description of Boolean functions with non-trivial arity gap is presented in [13].
In [16] these results are extended including the functions of k-valued logic, k P 2. In [17], a
special class of functions - namely the class of symmetric k-valued functions with non-trivial
arity gap, is investigated.

Definition 2.2. Two functions g and h are called equivalent (non-distinct as mappings)
(written g ≡ h) if g can be obtained from h by permutation of variables, introduction or
deletion of inessential variables.

As mentioned earlier, there are two general ways for reduction of functions - by
subfunctions or by minors. The complexities of these processes we call the subfunction or
minor complexities, respectively.

An obvious difference between these concepts is the following: Each identification minor
can be decomposed into subfunctions, but there are subfunctions which can not be
decomposed into minors. For example, we have

fi←j ¼ ⊕
k−1

m¼0
xmj :f ðxi ¼ m; xj ¼ mÞ

for all f ; f ∈Pn
k , where f ≻ f ðxi ¼ m; xj ¼ mÞ and f ≻ fi←j.

Let f ¼ x1 ⊕ x2 ⊕ x3 be a Boolean function. It is easy to see that the subfunction
f ðx1 ¼ 1Þ ¼ x2 ⊕ x3 ⊕ 1 can not be decomposed into any minors of f.

Roughly spoken, the complexity of functions, is amapping (evaluation)Val : Pn
k →Nwith

ValðxÞ ¼ c for all x∈X and for some natural number c∈N, called the initial value of the
complexity, and Valðf Þ P c for all f ∈Pn

k .
The concept of complexity of functions is based on the “difficulties” when computing

several resulting objects as subfunctions, implementations, separable sets, values,
superpositions, minors, etc.

As mentioned, the computational complexities subðf Þ; impðf Þ and sepðf Þ are used in [15]
to classify the functions from the algebra Pn

k . These complexities are invariants under the
action of the suitable transformation groups.

Many computations, constructions, processes, translations, mappings and so on, can be
modeled as stepwise transformations of objects known as reduction systems. Abstract
Reduction Systems (ARS) play an important role in various areas such as abstract data type
specification, functional programming, automated deductions, etc. [9] The concepts and
properties of ARS also apply to other rewrite systems such as string rewrite systems (Thue
systems), tree rewrite systems, graph grammars, etc. For more detailed facts about ARS we
refer to J.W. Klop and Roel de Vrijer [9]. An ARS in Pn

k is a structure W ¼ hPn
k ; f→ igi∈I; i,

where f→ igi∈I is a family of binary relations onPn
k , called reductions or rewrite relations. For a

reduction → i the transitive and reflexive closure is denoted↠i. A function g ∈Pn
k is a normal

form if there is no h∈Pn
k such that g→ ih. In all different branches of rewriting two basic

concepts occur, known as termination (guaranteeing the existence of normal forms) and
confluence (securing the uniqueness of normal forms).
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A reduction → i has the unique normal form property (UN) if whenever t; r∈Pn
k are

normal forms obtained by applying the reductions → i on a function f ∈Pn
k then t and r are

equivalent (non-distinct as mappings).
The computations on functions proposed in the present paper can be regarded as an ARS,

namely: W ¼ hPn
k ; f≻;≻gi. Next, we show that ≻ completes the reduction process with

unique normal form, whereas ≻ has not unique normal form property.
A reduction → is terminating (or strongly normalizing SN) if every reduction sequence

f → f1 → f2 . . .eventually must terminate. A reduction → is weakly confluent (or has weakly
Church-Rosser property WCR) if f → r and f → v imply that there is w∈Pn

k such that r ↠ w
and v↠w.

Theorem 2.3.

(i) The reduction ≻ is UN;

(ii) The reduction ≻ is SN, but it is not WCR.

Proof. (i) (SN) If f ≻ g then essðf Þ > essðgÞ. Since the number of essential variables essðfiÞ of
the functions fi in any reduction sequence f ≻ f1 ≻ . . . ≻ fi ≻ . . . strongly decrease, it
follows that the sequence eventually must terminate, i.e. the reduction is terminating.

(WCR) Let f be a function and f ≻ g, and f ≻ h. Let t and r be normal forms such that
g c t and h c r. Note that each normal form is a resulting minor obtained by collapsing all
the essential variables in f. Hence, essðtÞ # 1and essðrÞ # 1. Thenwe have t ¼ f ðxj; . . . ; xjÞ,
for some xj ∈ Essðf Þ and r ¼ f ðxi; . . . ; xiÞ, for some xi ∈ Essðf Þ, and hence,

t ¼ f ðxj; . . . ; xjÞ≡ f ðxi; . . . ; xiÞ ¼ r:

Now, (i) follows from Newman’s Lemma (Theorem 1.2.1. [9]), which states that WCR &
SN 0 UN.

(ii) Clearly, each value of a function fwith essðf Þ > 0 is an its subfunction normal form and
each subfunction of fwhich is not a constant is not a normal form. Hence≻ is SN. Every non-
constant functions have at least two values (normal forms), which shows that ≻ is not WCR
and UN. ,

Thus, for each function f ðx1; . . . ; xnÞ that depends on all its variables, the function
f ðx; . . . ; xÞ is the identification minor normal form of f.

An essential variable xi in a function f ∈Pn
k is called a strongly essential variable in f if there

is a constant ci such that Essðf ðxi ¼ ciÞÞ ¼ Essðf Þnfxig. The set of all strongly essential
variables in f is denoted SEssðf Þ.

The following lemma is independently proved by K. Chimev [2] and A. Salomaa [11] in
different variations.

Lemma 2.4. [2] Let f be a function. If essðf Þ > 1 then f has at least two strongly essential
variables, i.e. essðf Þ > 10jSEssðf Þj > 1.

We are going to prove several results in TSS which will be used later to show relationship
between arity gap and separable sets.

Lemma 2.5. Let N ∈ Sepðf Þ. If there exist m constants c1; . . . ; cm ∈ Zk such that
N ∩ EssðgiÞ ¼ Ø where gi ¼ f ðxi ¼ ciÞ for 1#i#m then M ∪ N ∈Sepðf Þ for all M ≠Ø;
M ⊆ fx1; . . . ; xmg.
Proof. It suffices to look only at the set M ¼ fx1; . . . ; xmg. First, assume that M ∩ N ¼ Ø
and without loss of generality let us assume N ¼ fxmþ1; . . . ; xsg;m < s#n. Since
N ∈ Sepðf Þ, there exists a vector of constants, say d ¼ ðdsþ1; . . . ; dnÞ∈ Zn−s

k such that
N ⊆ EssðgÞ, where
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g ¼ f ðxsþ1 ¼ dsþ1; . . . ; xn ¼ dnÞ:
Let us fix an arbitrary variable from N, say the variable xs ∈N. Then there exist s−m− 1
constants dmþ1; . . . ; ds−1 ∈ Zk such that xs ∈EssðhÞwhere

h ¼ gðxmþ1 ¼ dmþ1; . . . ; xs−1 ¼ ds−1Þ:
We have to prove that M ⊆ EssðhÞ. Let us suppose the opposite, i.e. there is a variable, say
x1 ∈M which is inessential in h. Since x1 ∈ fx1; . . . ; xmg, there is a value c1 ∈ Zk such that
N ∩ EssðtÞ ¼ Ø where t ¼ f ðx1 ¼ c1Þ. Our supposition shows that h ¼ hðx1 ¼ c1Þ and
hence,N ∩ EssðhÞ ¼ Ø, i.e. xs ∉EssðhÞ, which is a contradiction. Consequently,M ¼ EssðhÞ.
Then g c h implies M ⊆ EssðgÞ and hence, M ∪ N ¼ EssðgÞ which establishes
that M ∪ N ∈Sepðf Þ.

Second, let M ∩ N ≠Ø. Then we can pick P ¼ MnN and hence, P ⊆ fx1; . . . ; xmg;
P ∩ N ¼ Ø, and N ∈ Sepðf Þ. As shown, above P ∪ N ∈Sepðf Þ and M ∪ N ∈ Sepðf Þ, as
desired. ,

Corollary 2.6. Let xi and xj be two distinct essential variables in f. If there is a constant c; c∈ Zk
such that f ðxi ¼ cÞ does not essentially depend on xj then fxi; xjg∈Sepðf Þ.
Definition 2.7. Let M be an inseparable set in f. A subset M1 of M is called a maximal
separable subset of M in f, if M1 is separable in f and for each M2, M1 ⊂

≠
M2 ⊆ M it is

held M2 ∉ Sepðf Þ.
The set of all maximal separable subsets of M in a function f is denoted by MaxðM ; f Þ.

Definition 2.8. Let M1; M1 ∈MaxðM ; f Þ be a maximal separble subset of the inseparable
setM in f. The essential variable xi in f is called an essential conjugate of the setM1 in f if for
each subfunction g; f ≻ m2g, where M2 ¼ MnM1 we have M1 ∈SepðgÞ and xi ∈EssðgÞ.
Example 2.9. Let f be the following function f ¼ x01x

1
2 ⊕ x02x

1
3x

2
4ðmod 3Þ. It is easy to

see that M ¼ fx1; x3; x4g∉Sepðf Þ and MaxðM ; f Þ ¼ ffx1g; fx3; x4gg. Clearly, x2 is an
essential conjugate of both fx1g and fx3; x4g in f.

The next theoremwas proven by K. Chimev, and it is an important step to achieve a series
of results concerning identification minors of functions [2,3].

Theorem2.10. [2] Let f ∈Pn
k ; Ø≠M ∉ Sepðf Þ; M1 ∈MaxðM ; f ÞandM2 ¼ MnM1. Then

for each subfunction g; fcM2g of f, there exists a variable xi; xi ∈Essðf ÞnM such that
xi ∈EssðgÞ and M1 ∈ SepðgÞ.

Note that Theorem 2.10 does not provide the existence of at least one essential conjugate of
any maximal separable subset of M. We are going to strengthen Theorem 2.10 in this
direction. First, we shall prove the following lemma.

Lemma2.11. Let M be a non-empty inseparable set of essential variables in f ;L ¼ Essðf ÞnM
and let M1 ∈ MaxðM ; f Þ. Then there exists a subfunction g; fc Lg such that M1: ⊆ EssðgÞ.
Proof. Without loss of generality let us assume that

M1 ¼ fx1; . . . ; xmg; M ¼ fx1; . . . ; xmþpg and L

¼ fxmþpþ1; . . . ; xng:

Indeed, suppose this were not the case. Then M1 ⊆ EssðgÞ for each c; c∈ Zn−m−p
k . Since the

variable xmþ1 is essential in f, there is a vector of constants b ¼ ðbmþpþ1; . . . ; bnÞ∈ Zn−m−p
k ,

such that xmþ1 ∈EssðtÞ, where
t ¼ f ðxmþpþ1 ¼ bmþpþ1; . . . ; xn ¼ bnÞ:
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Let a ¼ ðamþ2; . . . ; amþpÞ∈ Zp−1
k be a vector of constants from Zk such that xmþ1 ∈EssðvÞ,

where

v ¼ tðxmþ2 ¼ amþ2; . . . ; xmþp ¼ amþpÞ:
Theorem 2.10 implies M1 ⊆ EssðvÞ. Clearly, EssðvÞ ⊆ M1 ∪ fxmþ1g. Hence EssðvÞ ¼ M1 ∪
fxmþ1g; EssðvÞ ⊆ Essðf Þ and M1 ⊆ EssðvÞ ⊆ M with M1 ≠EssðvÞ≠M which contradicts
M1 ∈MaxðM ; f Þ. Consequently, there is a vector c∈ Zs

k of constants from Zk such that
M1: ⊆ EssðgÞwhere fc c

Lg. ,
The next theorem is a slight improvement of Theorem 2.10.

Theorem 2.12. Let f ∈Pn
k ;Ø≠M ∉Sepðf Þ and let M1 ∈MaxðM ; f Þ. Then there exists at

least one essential conjugate of M1 in f.

Proof. Without loss of generality let us assume
Essðf Þ ¼ fx1; . . . ; xng; M1 ¼ fx1; . . . ; xmg and M ¼ fx1; . . . ; xmþpg:

According to Lemma 2.11 there exists a vector c ¼ ðcmþpþ1; . . . ; cnÞ∈ Zn−p
k such that

M1: ⊆ EssðgÞ, where g ¼ f ðxmþpþ1 ¼ cmþpþ1; . . . ; xn ¼ cnÞ:
Since M1 is separable in f there exists a vector b ¼ ðbmþpþ1; . . . ; bnÞ∈ Zn−p

k such that
M1 ∈ SepðhÞ, where h ¼ f ðxmþpþ1 ¼ bmþpþ1; . . . ; xn ¼ bnÞ:

Let s; 1 # s # n−m− p be the minimal natural number for which M1 ∈ SeptðtÞ, where
t ¼ f ðxmþpþ1 ¼ cmþpþ1; . . . ; xmþpþs−1 ¼ cmþpþs−1Þ

and M1 ∉EssðuÞ, where u ¼ tðxmþpþs ¼ cmþpþsÞ: The number s must exist because
M1: ⊆ EssðgÞ and M1 ∈SepðhÞ.

First, let s < n−m− p. Then M1 ∈ SepðtÞ implies that there exist constants
dmþpþs; . . . ; dn ∈ Zk, such that M1 ∈ Sepðt1Þ and M1: ⊆ Essðt2Þwhere

t1 ¼ tðxmþpþs ¼ dmþpþs; . . . ; xn ¼ dnÞ
and

t2 ¼ uðxmþpþsþ1 ¼ dmþpþsþ1; . . . ; xn ¼ dnÞ:
Pick

v ¼ tðxmþpþsþ1 ¼ dmþpþsþ1; . . . ; xn ¼ dnÞ:
Clearly,M1 ∈ SepðvÞand xmþpþs ∈EssðvÞ. If ðMnM1Þ ∩ EssðvÞ ¼ Ø then we are clearly done.
Next, suppose with no loss of generality that

L ¼ fx1; . . . ; xm; xmþ1; . . . ; xmþrg ⊆ EssðvÞ
with 1 # r # p. Then L must be inseparable in v and M1 ∈MaxðL; vÞ. Now, Theorem 2.10
shows that xmþpþs is an essential conjugate of M1 in v and f.

Second, let as assume s ¼ n−m− p. Then we can pick z ¼ f ðxmþpþ1 ¼ cmþpþ1;
. . . ; xn−1 ¼ cn−1Þ with M1 ∈ SepðzÞ and M1: ⊆ Essðzðxn ¼ cnÞÞ. The rest of the proof that
xn is an essential conjugate of M1 in z and f is left to the reader. ,

The improvement of Theorem 2.10 consists in the fact that wemight choose the variable xi
before the choice of the subfunction g; fcM2g.

A natural question to ask is there an “universal” essential conjugate xi ∈Essðf ÞnM for all
maximal separable subsets ofM, i.e. is it possible to choose the variable inTheorem 2.12 before
the choice of the setM1 ∈MaxðM ; f Þ?The next example shows that the answer is negative.

Example 2.13. Let k ¼ 2 and f ¼ x1x4x
0
5 ⊕ x2x

0
4x6 ⊕ x3x5x

0
6. Clearly M ¼ fx1; x2; x3g

∉ Sepðf Þ andMaxðM ; f Þ ¼ ffx1g; fx2g; fx3gg:Also, it is easy to verify that x6 ∉Essðf ðx2
¼ 0; x3 ¼ 0ÞÞ; x5 ∉Essðf ðx1 ¼ 0; x3 ¼ 0ÞÞand x4 ∉Essðf ðx1 ¼ 0; x2 ¼ 0ÞÞ: The essential
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conjugates of the maximal separable subsets are: fx4; x5g of fx1g; fx4; x6g of fx2g, and
fx5; x6g of fx3g.

Let us turn our attention to the following:

1. Each simple minor obtained by collapsing pairs of variables belonging to distinct
maximal separable subsets of M depends on possible maximal number of essential
variables. Thus we have essðf2←1Þ ¼ essðf3←1Þ ¼ essðf3←2Þ ¼ 5. For instance,
f2←1 ¼ x1x4x

0
5 ⊕ x1x

0
4x6 ⊕ x3x5x

0
6.

2. The simple minors obtained by pairs of essential conjugates essentially depend on
four variables, for instance, f5←4 ¼ x2x

0
4x6 ⊕ x3x5x

0
6.

Next, we turn our attention to relationship between essential arity gap and separable sets in
functions.

Theorem 2.14. Let f ∈ pnk. If gapðf ÞP2 then each non-empty set of essential variables is
separable in f.

Proof. Let M be an arbitrary non-empty set of essential variables in f. We prove that
M ∈ sepðf Þ by considering cases. The theorem is given to be true if n # 2. Next we
assume n > 2.

Case 1: gapðf Þ ¼ 2; n P 3 and k ¼ 2.

If n ¼ 3 then Theorem 3.2 [13] implies that f ¼ xα3ðx01x12 ⊕ x11x
0
2Þ⊕ x

β
1x

β
2 or f ¼ xα3ðx01x02

⊕ x11x
1
2Þ⊕ x

:ðαÞ
3 ðx01x12 ⊕ x11x

0
2Þ, where α; β∈ f0; 1g. Clearly, each set of essential variables in f

is separable.
If n ¼ 4 then according to Theorem 3.3 [13] we have f ¼ x04:gðx1; x2; x3Þ⊕ x14:hðx1;

x2; x3Þ, with g ¼ xα3ðx01x02 ⊕ x11x
1
2Þ⊕ x

:ðαÞ
3 ðx01x12 ⊕ x11x

0
2Þ, and h ¼ x

:ðαÞ
3 ðx01x02 ⊕ x11x

1
2Þ⊕ xα3ðx01

x12 ⊕ x11x
0
2Þ, for some α; α∈ f0; 1g (here :ðαÞ means negation of α). Clearly, each set of

essential variables in f is separable.
Let nP5 From Theorem 3.4 in [13] it follows that

f ¼ ⊕
α1 ⊕ ���⊕ αn¼1

xα11 � � � xαnn or f ¼ ⊕
α1 ⊕ ���⊕αn¼0

xα11 � � � xαnn :

Thus we have Essðf Þ ¼ Xn. Suppose, with no loss of generality that M ¼ fx1; � � � ; xmg;
m < n and

f ¼ ⊕
α1 ⊕ ���⊕ αn¼1

xα11 � � � xαnn :

Let c1; � � � ; cn ∈ Zk and c1 ⊕ � � � ⊕ cn ¼ 1. We can pick g ¼ f ðxmþ1 ¼ cmþ1; � � � ; xn ¼ cnÞ and
r ¼ cmþ1 ⊕ � � � ⊕ cn. Assume without loss of generality that r ¼ 1. Then we have

g ¼ ⊕
α1 ⊕ ���⊕ αn¼1

xα11 � � � xαmm :

It must be shown thatM ¼ EssðgÞ. By symmetry, it is enough to show that x1 ∈EssðgÞ. Let
c2; � � � ; cm ∈ Zk with c2 ⊕ � � � ⊕ cm ¼ 0. Then we have

gð0; c2; � � � ; cmÞ ¼ 1 and gð1; c2; � � � ; cmÞ ¼ 0;

which proves that x1 ∈EssðgÞ.
Case 2: gapðf Þ ¼ 2; 2 < k < n.

Theorem 2.1 [18] implies that f is a symetric functionwhich essentially depends on all of its
n variables. Theorem 4.1 [17] states that: If f is a symmetric functionwith non-trivial arity gap,
then each set of essential variables in f is separable, which completes the proof of this case.
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Case 3: gapðf Þ ¼ 2; n ¼ 3 and kP3.

Lemma 5.1 [16] states that if f ∈G3
2;k then essðfi←jÞ ¼ 1 for all i; j∈ f1; 2; 3g; i≠ j, which

shows that each subset of X3 is separable in f.

Case 4: gapðf Þ ¼ 2; 4#n#k.

If f is a symmetric function then we are done because of Theorem 4.1 [17] and if f is not a
symmetric function then according to Theorem 4.2 [16] there exist n− 2 variables yl1;� � � ; yln− 2

∈Xn such that f ¼ h⊕ g,where EssðhÞ ¼ fyl1; � � � ; yln− 2
g and g ∈Gn

n;k. Moreover
gi←j ¼ 0 for all 1#i; j#n with i≠ j. Now, the proof can be done as in Case 6:, for p ¼ 2,
given below.

Case 5: gapðf Þ ¼ n; 3#n#k.

From Theorem 3.1 [16] it follows that f is presented in the following form:

f ¼ a0

�
⊕

α∈Eqn
k

xα

�
⊕

�
⊕

β∈Disn
k

arx
β

�
(1)

where
Eqsk ¼ fγ ∈ Zs

k

��∃i; j; 1#i < j#s; γi ¼ γjg,
γ ¼ γ1 � � � γs;xγ ¼ x

γ1
1 x

γ2
2 � � � xγss and Dissk ¼ Zs

knEqsk, for s; sP2. Moreover, there exist at least
two distinct numbers among ar ∈ Zk for r ¼ 0; 1; � � � ; kn − 1.

It is easy to see that Essðf Þ ¼ Xn. We have to show that M ∈ Sepðf Þ. Without loss of
generality let us assume that M ¼ fx1; � � � ; xmg; 1#m#n. If m ¼ n or m ¼ 1 we are clearly
done. Let 1 < m < nand let r ¼ Pn

i¼1βik
n−i be anatural number such that ar ≠ 0.Thenwehave

g ¼ f ðxmþ1 ¼ βmþ1; � � � ; xn ¼ βnÞ ¼ a0

�
⊕

δ∈Eqm
k

xδ

�
⊕

�
⊕

σ∈Dism
k

ajx
σ

�
;

where j ¼ Pn
i¼1σik

n−iwith σi ¼ βi for i ¼ mþ 1; � � � ; n, and there are at least two distinct
numbers among aj. Clearly, g essentially depends on all of its variables, i.e. EssðgÞ ¼ M and
hence M ∈Sepðf Þ.

Case 6 gapðf Þ ¼ p; 2 # p < n, and 4#n < k.
According to Theorem 3.4 [16], there exist functions h and g, such that f ¼ h⊕ g, where

g ∈Gn
n;k and essðhÞ ¼ n− p. Without loss of generality, let us assume that EssðhÞ ¼ fx1; � � � ;

xn−pg. Moreover, gi←j ¼ 0 for all i and j; 1 # j < i# n.
Clearly,Essðf Þ ¼ Xn and according to Theorem 3.1 [16] and the Eq. (1), given in Case 5, the

function g can be represented as follows g ¼ u⊕ v, where

u ¼
�

⊕
β∈Disn

k

arx
β

�
and v ¼ a0

�
⊕

α∈Eqn
k

xα

�
: (2)

Let xi; xj ∈Xn; i > j, be two arbitrary essential variables in g. Say i ¼ n and j ¼ n− 1, for
simplicity. Then we have

ui←j ¼ 0 and vi←j ¼ a0

�
⊕

δ∈zn−2
k

bxδ

�
¼ a0: (3)

Since gi←j ¼ 0 for all i and j, 1 # j < i#nwe have vi←j ¼ a0 ¼ 0and hence v ¼ 0, and g ¼ u.
Let M be a set of essential variables in f. Note that M ∈ sepðgÞ, according to Case 5 and if
M ∩ EssðhÞ ¼ Ø then M ∈ sepðf Þ:

We have to prove that M is separable in f in each other case. We argue by induction
on n-the number of essential variables in f and g.

Let n 5 4. This is our basis of induction.
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First, let jM j ¼ 2 and P ¼ 2. Clearly, ifM ⊆ EssðhÞ then (2) and (3) show thatM ∈ Sepðf Þ.
Next, let us assume that M ¼ fx1; x3g and EssðhÞ ¼ fx1; x2g. Let c2; c4 ∈ Zk be two
constants, such that Essðt1Þ ¼ fx1; x3g, where t1 ¼ gðx2 ¼ c2; x4 ¼ c4Þ. Clearly, x3 ∈Essðf1Þ,
where f1 ¼ f ðx2 ¼ c2; x4 ¼ c4Þ. Let h1 ¼ hðx2 ¼ c2Þ. If x1 ∉Essðh1Þ then x1 ∈Essðf1Þ and
obviously, M ∈ sepðf Þ. If x1 ∈Essðh1Þ then f1 ¼ h1ðx1Þ⊕ t1ðx1; x3Þ. According to (2) and (3)
there is a constant c3 ¼ Zk, such that Essðt1ðx3 ¼ c3ÞÞ ¼ Ø. Hence x1 ∈Essðf1ðx3 ¼ c3ÞÞ and
M ∈ sepðf Þ; again.

Second, let jM j ¼ 3 and P ¼ 2, and EssðhÞ ¼ fx1; x2g:
Let x1 ∉M. Then there is a constant c1 ∈ Zk such that x2 ∈Essðh2Þ, where h2 ¼ hðx1 ¼ c1Þ.

Thus, (2) implies that fx2; x3; x4g ¼ Essðf2Þ, where f2 ¼ f ðx2 ¼ c1Þ and M ∈ sepðf Þ, again.
Let x4 ∉M. Then there is a constant d4 ∈ Zk such that x3 ∈Essðt2Þ, where t2 ¼ gðx4 ¼ d4Þ.

Clearly, x3 ∈Essðf3Þ; where f3 ¼ f ðx4 ¼ d4Þ. According to (2) and (3), we have
f3 ¼ ðx3 ¼ d4Þ ¼ hðx1; x2Þ⊕ a0; which shows that fx1; x2; x3g ¼ Essðf3Þ and hence
M ∈ sepðf Þ:

One can argue similarly if P ¼ 3 and n ¼ 4:
Let us assume that for some natural number l; l P 4, if n < l; 2 # p; l < k and f ∈Gn

p;k;
then each set of essential variables in f is separable.

Let us pick n ¼ l. According to Lemma 2.4 there is a strongly essential variable xi,
1 # i # l in g, and let ci ∈ Zk be a constant such thatXlnfxig ¼ Essðgðxi ¼ ciÞÞ. Without loss
of generality, let us assume that i ¼ l and ci ¼ k− 1. Using (2), it is easy to verify that

t3 ¼ gðxl ¼ k� 1Þ ¼
�

⊕
β∈Disl−1

k−1

br~x
β

�
; (4)

where the coefficients br linearly depend on a0; . . . ; akl−1 and ~xβ ¼ x
β1
1 . . . x

βl−1
l−1 :

By p P 2 it follows that we may reorder the variables in h such that
EssðhÞ ¼ fx1; . . . xl−pgwith l − p < l − 1:

Thenwe can pick f4 ¼ f ðxl ¼ k− 1Þ ¼ h⊕ t3. It must be shown thatEssðf4Þ ¼ Xl−1. Since
p P 2 it follows that N ¼ Essðf4ÞnEssðhÞ≠Ø. Next, using (2) one can show that N ∈ Sepðt3Þ
and N ∈ Sepðf4Þ. According to (3) we have

N ∩ Essðf4ðxi ¼ k� 1ÞÞ � Ø;

for all i ¼ 1; . . . ; l − p. Now, Lemma 2.5 implies N ∪ fx1; . . . ; xl−pg∈ Sepðf4Þ: Hence
Essðf4Þ ¼ xl−1:According to (4) it follows that f4 ∈Gl−1

p;k−1:
Therefore the inductive assumption may be applied to f4, yielding M ∈ Sepðf4Þ, and

hence M ∈ sepðf Þ: ,

3. Decision diagrams of functions
3.1 Ordered decision diagrams
Intuitively, it seems that a function f has the maximal complexity under the subfunction
reduction if all its sets of essential variables are separable, because the variables from
separable sets remain essential after assigning constants to other variables (see [15]). For
example, when assigning Boolean constants to some variables of a Boolean function, then a
natural complexity measure is the size of its Binary Decision Diagrams (BDDs), which also
depend on the variable ordering (see [1]). Each path from the root (function node) to a terminal
node (leaf) of BDD is called an implementation of f. The subfunction complexities
impðf Þ; subðf Þ and sepðf Þ of all implementations, subfunctions, and separable sets,
obtained under all n! variable orderings of n-ary Boolean functions for n; n#5, are studied
and calculated in [15].

Example 3.1. Let f ¼ x1x
0
4 ⊕ x01x3 ⊕ x2x3 ⊕ x2x4ðmod 2Þ and g ¼ x1 ⊕ x2 ⊕ x3 ⊕ x4

ðmod 2Þ be two Boolean functions. Figure 1 presents their BDDs under the natural
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variable ordering x1; x2; x3; x4. All sets of essential variables in g are separable, whereas the
sets ðx1; x2Þ and ðx3; x4Þ are inseparable in f. Clearly, f has non-trivial essential arity gap
and f ∈G4

2;2: Note that the implementations (longest paths) in Figure 1 A) consist of three
edges, but in Figure 1 B) of four edges, which shows that the BDD of the function g is
extremely complex with respect to the number of its subfunctions and separable sets,
whereas the BDD of f is simpler.

3.2 Minor decision diagrams
Next we introduce a new graph-based presentation of the k-valued functions, namely by the
minor decision diagrams.

The minor decomposition tree (MDT) of a function, consists of the node, labelled f –
called the function node and nodes labelled with minor names, called the internal (non-
terminal) nodes, and the rectangular nodes (leaves of the tree) called the terminal nodes. The
terminal nodes are labelled with the same name of a function (atomic minor) from P1

k
(according to Theorem 2.3). The terminal and non-terminal nodes in the MDT for a function
f, essentially depending on n variables, are disposed into maximum n− 1 layers of the tree.
The i-th layer consists of names of all the distinct minors of order i, for i ¼ 1; . . . ; n− 1.
Figure 2 presents the MDT of the function f ¼ x1x

0
4 ⊕ x01x3 ⊕ x2x3 ⊕ x2x4, given in

Example 3.1.
We introduce theminor decision diagrams (MDDs) for k-valued functions constructed by

reducing their minor decomposition trees (MDTs). Let f be a k-valued function. The minor
decision diagram (MDD) of f is obtained from the corresponding MDT by reductions of its
nodes and edges applying of the following rules, starting from the MDT and continuing until
neither rule can be applied:

Reduction rules

� If two edges have equivalent (as mappings) labels of their nodes they are merged.

� If two nodes have equivalent labels, they are merged.

Example 3.2. Let us build the MDDs of the functions from Example 3.1, namely
f ¼ x1x

0
4 ⊕ x01x3 ⊕ x2x3 ⊕ x2x4ðmod 2Þand g ¼ x1 ⊕ x2 ⊕ x3 ⊕ x4ðmod 2Þusing the reduction

rules and their MDT’s.

Figure 3 A) shows the MDD of the function f, and Figure 3 B) presents the MDD of g. The
identification minors of f and g are:

Figure 1.
Binary Desicion
Diagrams.
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Each edge e ¼ ðv1; v2Þ in the diagram is supplied with a label lðv1; v2Þ, (written as bold in
Figure 3A), which presents the number of themerged edges of theMDT, connecting the nodes
v1 and v2 in MDT.

If two nodes in MDT are connected with unique edge then this edge is presented in MDD
without label, for brevity. For example, such pairs are ðf ; f4←2Þ; ðf3←1; f2←1Þ and ðf2←1; 0Þ.

The label of the edge ðf ; f3←1Þ is 3 because there are three identification minors, namely
f3←1; f4←1 and f3←2 of f which are equivalent to f3←1 (see Figure 2).

In a similar way we count the labels of the edges in Figure 3 B).

f2←1 ¼ f4←3 ¼ x1 ⊕ x3;

f2←1 ≡ f4←3 ≡ ½f3← 1�4←2≡ ½f4← 2�2←1

f4←2 ¼ x1x
0
2 ⊕ x01x3 ⊕ x2x

0
3:

gi←j ≡ g2←1 ¼ x3 ⊕ x4;

½g2← 1�4←3 ¼ 0:

f3←1 ¼ x1x
0
4 ⊕ x1x2 ⊕ x2x4;

f3←1 ≡ f4←1 ≡ f3←2

for 1≤ j < i≤ 4 and;

Figure 2.
MDT of f ¼ x1x

0
4 ⊕ x01

x3 ⊕ x2x3 ⊕ x2x4
ðmod 2Þ.
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So, the MDD of f is an acyclic directed graph, with unique function node and according to
Theorem 2.3, with unique terminal node. Clearly, theMDD andMDTare uniquely determined
by the function f.

3.3 Complexity and equivalence relations with respect to minor reduction
Many of the problems in the applications of the k-valued logic are compounded because of the
large number of the functions, namely kk

n

. Techniques which involve enumeration of
functions can only be used if k and n are trivially small. A common way for extending the
scope of such enumerative methods is to classify the functions into equivalence classes by
some natural equivalence relation.

Let SA denote the symmetric group of all permutations of the non-empty set A, and let Sm
denote the group Sf1:;...;mg for a natural number m; mP1.

A transformation ψ : Pn
k →Pn

k is an n-tuple of k-valued functions ψ ¼ ðg1; . . . ; gnÞ; g1 ∈
Pn
k ; i ¼ 1; . . . ; n; acting on a function f ¼ f ðx1 . . . xnÞ∈Pn

k as follows ψðf Þ ¼ f ðg1; . . . ; gnÞ.
Then the composition of two transformations ψ and f ¼ ðh1 . . . hnÞ is defined as follows

ψf ¼ ðh1ðg1 . . . gnÞ; . . . ; hnðg1 . . . gnÞÞ:
The set of all transformations of Pn

k is the universal monoid Ωn
k with unity - the identical

transformation e ¼ ðx1 . . . xnÞ. When taking only invertible transformations we obtain the
universal group Cn

k which is isomorphic to the symmetric group Szn
k
. The groups consisting of

invertible transformations of Pn
k are called transformation groups (sometimes termed

permutation groups).
Let ’; ’ ⊆ Pn

k 3 Pn
k be an equivalence relation on the algebra Pn

k . Since P
n
k is a finite

algebra of k-valued functions, the equivalence relation’makes a partition of the algebra in a
finite number equivalence classes.

A mapping w : Pn
k →Pn

k is called a transformation preserving’ if f ’ wðf Þ for all f ∈Pn
k .

Taking only invertible transformations which preserve ’, we get the group G’ of all
transformations preserving ’. The orbits (also called G’-types) of this group are denoted
by P1; . . . ; Pr.

Our aim is to classify functions from Pn
k into equivalence classes by ’. Thus we have to

calculate the number r of G’-types, to count the number of functions in different equivalence
classes, i.e. compute the cardinalities of the sets P1; . . . ; Pr and to create a list of functions
belonging to different G’-types.

Figure 3.
Minor decision
diagrams.
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Let f ∈Pn
k and let nof ðf Þdenote the normal form obtained by applying the reduction≻ on

f. According to Theorem 2.3, the normal form nof ðf Þ is unique and nof ðf Þ∈P1
k . Thus, our

first natural equivalence is defined as follows:

Definition 3.3. Let f and g be two functions from Pn
k . We say that f and g are

nof-equivalent (written f’nof g) if nof ðf Þ ¼ nof ðgÞ.
The transformation group induced by nof-equivalence is denoted NFn

k . The
transformations in NFn

k preserve ’nof , i.e. nof ðgÞ ¼ nof ðψðgÞÞ for all g ∈Pn
k and ψ ∈NFn

k .
Since the atomic minors (labels of terminal nodes in MDD) depend on at most one essential
variable, it follows that the number of the orbits of NFn

k is equal to
��P1

k

�� ¼ kk. These
transformations involve permuting variables, only (see Theorem 3.9, below).

By analogy with the ordered decision diagrams [1,15], we define several equivalence
relations in Pn

k , which allow us to classify the functions by the complexity of their MDDs.
The “scalability” of the diagram is an important measure of the computational complexity

of the function. We are going to formalize this problem and establish a method for
classification of functions by the minor complexities.

First, the numbermnrðf Þ of all the minors of a function f is a complexity measure, which
can be used to evaluate the MDD of f. Namely, it counts the size (number of terminal and non-
terminal nodes) of the MDD. M. Couceiro, E. Lehtonen and T. Waldhauser have studied
similar evaluation, named “parametrized arity gap” in [5,6], which characterizes the
sequential identification minors of a function.

Second, we are going to classify functions in finite algebras under the complexity
measures which count the number of minors and the number of ways to obtain these minors.

Definition 3.4. Let f ∈Pn
k be a k-valued function. Its cmr-complexity cmrðf Þ is defined as

follows:

(i)cmrðf Þ ¼ 1 if essðf Þ#1;

(ii)cmrðf Þ ¼ 2 if essðf Þ ¼ 2;

(iii)cmrðf Þ ¼ P
j<i; xi ;xj∈Essðf Þcmrðfi←jÞ if essðf ÞP3:

The minors fi←jwith i < j are excluded because fi←j ≡ fj←i. The minor complexity cmr can be
inductively calculated using the MDDs of the functions as it is shown in Example 3.5, given
below. We start to assign cmr-complexity equals to 1 for the terminal node, which is labeled
by the minor of “0” of highest order according to (i) of Definition 3.4. Next, we inductively
calculate the cmr-complexity of the minors of f with lower order, applying (ii) and (iii) of
Definition 3.4.

Example 3.5. Let us count the cmr-complexity of the function f from Example 3.1 , using
the identification minors of f obtained in Example 3.2 and MDD of f, given in Figure 3 A).
There is two simple minors ðf2←1and f4←3Þ of order 2 and four simple minors of order 1. Thus
we have cmrðf2←1Þ ¼ cmrðf4←3Þ ¼ 2; cmrðf3←1Þ ¼ cmrðf4←1Þ ¼ cmrðf3←2Þ ¼ 1 * 2þ 2 * 1
¼ 4 and cmrðf4←2Þ ¼ 3 * 2 ¼ 6. According to Definition 3.4 we have cmrðf Þ ¼ 2 * 2þ 1 * 6
þ 3 * 4 ¼ 22.

In a similar way from the MDD of g in Figure 3 B) we obtain cmrðgÞ ¼ 6 * 2 ¼ 12.

Definition 3.6. Let f and g be two functions with essðf Þ ¼ n; nP0.We say that f and g are
cmr-equivalent (written f’cmrg) iff:

(i) n#10essðf Þ ¼ essðgÞ;
(ii) nP20 there exists a bijection σ : Essðf Þ→EssðgÞ, such that fi←j’cmrgr←s, where
xr ¼ σðxiÞand xs ¼ σðxjÞ, for all j; i, with xi; xj ∈Essðf Þ; j < i.
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Let CMn
k denote the transformation group preserving the equivalence ’cmr, i.e. ψ ∈CMn

k if
and only if ψðf Þ ¼ g0f’cmrg.

The nof-equivalence is independent on the cmr-complexity of functions, defined by
reduction via minors. For example, the functions f ¼ 0 and g ¼ x01x2 ⊕ x1x2x

0
3ðmod 2Þ are

nof-equivalent, but they are not cmr-equivalent.
Next we define another equivalence based on the number of minors (size of MDD) in a

function.

Definition 3.7. Let f and g be two functions from Pn
k . We say that f and g aremnr-equivalent

(written f’mnrg) if mnrmðf Þ ¼ mnrmðgÞ for all m; 0#m#essðf Þ− 1.

Clearly, if essðf Þ#1 then Mnrðf Þ ¼ Ø. Hence, if essðf Þ ¼ essðgÞ#1 then f’mnrg. MNn
k

denotes the transformation group which preserves the equivalence ’mnr.
Note that f’mnrg or f’nof g do not imply essðf Þ ¼ essðgÞ, which can be seen by the

following functions: f ¼ x01x
1
2ðmod 3Þ and g ¼ x01x

1
2x

2
3ðmod 3Þ. Clearly, f’mnrg and f’nof g,

but essðf Þ ¼ 2, and essðgÞ ¼ 3.

Theorem 3.8.

(i)f’cmrg 0 cmrðf Þ ¼ cmrðgÞ;
(ii) f’cmrg 0 f’mnrg.

Proof. We argue by induction on the number n ¼ essðf Þ.
If essðf Þ#2 (basis for induction) then we are clearly done. Assume that (i) and (ii) are

satisfied when n < s for some natural number s; s > 2. Let n ¼ s and f’cmrg. Then our
inductive assumption implies

cmrðf Þ ¼
X
j<i

cmr
�
fi←j

	 ¼ X
u<v

cmrðgu←vÞ ¼ cmrðgÞ;

and mnrmðfi←jÞ ¼ mnrmðgu←vÞ, where u ¼ πðiÞ and v ¼ πðjÞ for some π ∈ Sn and m ¼ 0;
. . . ; n− 1. ,
Thus, the complexity cmrðf Þ is an invariant of the groupCMn

k , and the complexitymnrðf Þ
is an invariant of the group MNn

k .
It is naturally to ask which groups among “traditional” transformation groups are

subgroups of the groups NFn
k or CM

n
k and which of these groups include NF

n
k ; MNn

k orCM
n
k

as their subgroups.
Let σ : Zk → Zk be a mapping and let ψσ : P

n
k →Pn

k be a transformation of Pn
k generated by

σ as follows ψσðf ÞðaÞ ¼ σðf ðaÞÞ for all a∈ Zn
k .

Theorem 3.9. The transformation ψσ preserves ’cmr if and only if σ is a permutation
of Zk; k > 2.

Proof. Let σ : Zk → Zk.
First, let σ be a permutation of Zk. Let f ∈Pn

k be an arbitrary function. If essðf Þ#1 then
essðψσðf ÞÞ ¼ essðf Þ and we are clearly done. Let essðf Þ ¼ essðgÞ ¼ nP2 and let i and
j be two arbitrary natural numbers with 1#j < i#n. Then we have

½ψσðf Þ�i←jðx1; . . . ; xnÞ ¼ σ
�
fi←jðx1; . . . ; xnÞÞ:

Since σ is a permutation, it follows that fi←j’cmr½ψσðf Þ�i←jwhich shows that f’cmrψσðf Þ.
Second, let σ be not a permutation of Zk. Hence, there exist two constants a1 and a2 from Zk

such that a1 ≠ a2 and σða1Þ ¼ σða2Þ. Let b ¼ ðb1; . . . ; bnÞ∈ Zn
k ; nP2 be a vector of

constants from Zk. Then we define the following function from Pn
k :

f ðx1; . . . ; xnÞ ¼
�
a1 if xi ¼ bi for i ¼ 1; . . . ; n
a2 otherwise:
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Clearly, Essðf Þ ¼ Xn and the range of f consists of two numbers a1 and a2. Then
σðfa1; a2gÞ ¼ fσða1Þg, implies that ψσðf Þðc1; . . . ; cnÞ ¼ σða1Þ for all ðc1; . . . ; cnÞ∈ Zn

k .
Hence, Essðψσðf ÞÞ ¼ Øwhich shows that f:’cmrψσðf Þ and ψσ ∉CMn

k . ,
We deal with “natural” equivalence relations which involve variables of functions. Such

relations induce permutations of the domain Zn
k of the functions. These mappings form a

transformation group whose number of equivalence classes can be determined. The
restricted affine group (RAG) is defined as a subgroup of the symmetric group on the direct
sum of the module Zn

k of arguments of functions and the ring Zk of their outputs. The group
RAGpermutes the direct sum Zn

k þ Zk under restrictions which preserve single-valuedness of
all functions from Pn

k [8,10].
In the model of RAG an affine transformation ψ operates on the domain or space of

inputs x ¼ ðx1; . . . ; xnÞ to produce the output y ¼ xA⊕ c, which might be used as an
input in the function f. Its output f ðyÞ together with the function variables x1; . . . ; xn are
linearly combined by a range transformation which defines the image g ¼ ψðf Þ of f as
follows:

gðxÞ ¼ ψðf ÞðxÞ ¼ f ðyÞ⊕ a1x1 ⊕ . . . ⊕ anxn ⊕ d ¼
f ðxA⊕ cÞ⊕ atx

⊕ d;
(5)

where d and ai for i ¼ 1; . . . ; n are constants from Zk; c∈ Zn
k , and a ¼ ða1; . . . ; anÞ∈ Zn

k .
Such a transformation belongs to RAG if A is a non-singular matrix.

Wewant to extract basic facts for several subgroups of RAGwhich are “neighbourhoods”
or “relatives” of our transformation groups NFn

k ; CM
n
k and MNn

k .
First, a classification occurs when permuting arguments of functions. If π ∈ Sn then π acts

on variables by: πðx1; � � � ; xnÞ ¼ ðxπð1Þ; � � � ; xπðnÞÞ. Each permutation generates a map on the
domain Zn

k .
For example, the permutation π ¼ ð1; 2; 3Þ generates a permutation of the domain

f0; 1; 2g3 of the functions from P3
3. Then we have π : 001→ 010→ 100 and in cyclic decimal

notation this permutation can be written as ð1; 3; 9Þ. The remaining elements of Z 3
3 are

mapped according to the following cycles of π in decimal notation - ð2; 6; 18Þð4; 12; 10Þ
ð5; 15; 19Þð7; 21; 11Þð8; 24; 20Þ ð14; 16; 22Þð17; 25; 23Þ. Note that each permutation from Sn
keeps fixed all k constant tuples from Zn

k . In case of Z 3
3 , these tuples ð0; 0; 0Þ; ð1; 1; 1Þ andð2; 2; 2Þ are presented by the decimal numbers 0; 13 and 26.

Sn
k denotes the transformation group induced by permuting of variables. Boolean

functions of two variables are classified into twelve S2
2-classes [8], as it is shown in Table 1. M.

Harrison has determined the cycle index of the group Sn
2 . Using Polya’s counting theorem he

has counted the number of equivalence classes under permuting arguments (see [8] and
Table 3, below).

The subgroups of RAG, defined according to (5) which are “relatives” to the groups
NFn

k ;CM
n
k and MNn

k are determined as follows: RAG when A-non-singular; CFn
k when

A ¼ I; a ¼ 0; c ¼ 0; LFn
k when A ¼ I; c ¼ 0; d ¼ 0; CAn

k when A ¼ I; a ¼ 0; d ¼ 0; LGn
k

c ¼ 0; a ¼ 0; d ¼ 0; Sn
k when A ¼ P; c ¼ 0; a ¼ 0; d ¼ 0, where P denotes a permutation

matrix, I is the identity matrix, bandc are n-dimensional vectors from Zn
k and d∈ Zk.

It is naturally to ask which subgroups of RAG are subgroups of NFn
k ;CM

n
k and MNn

k .
Theorem 3.8 shows that CFn

k and Sn
k are subgroups of MNn

k . Clearly, S
n
k#NFn

k .

Theorem 3.10.

(i) CFn
k ≤CMn

k ; (ii) Sn
k ≤CMn

k ; (iii) Sn
k ≤NFn

k ;
(iv) NFn

k:≤RAG; (v) CMn
k :≤RAG; (vi) LGn

k:≤MNn
k ;

(vii) CAn
k:≤MNn

k ; (viii) CAn
k:≤NFn

k ; (ix) LGn
k:≤NFn

k ;
(x) CMn

k :≤NFn
k ; (xi) NFn

k :≤MNn
k :
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Proof. (i) Follows from Theorem 3.9.(ii) and (iii) – Let π ∈ Sn and let fπ : Pn
k →Pn

k be a
transformation of Pn

k defined as follows fπðf Þða1; � � � ; anÞ ¼ f ðaπð1Þ; � � � ; aπðnÞÞ for all
ða1; � � � ; anÞ∈ Zn

k . We have to prove that the transformation fπ preserves the equivalence
relations ’cmr;’mnr and ’nof for all π ∈Sn. It suffices to show that fπ preserves ’cmr and
’nof . Let f ∈Pn

k be a function and let us assume Essðf Þ ¼ Xn; nP2. It must be shown that
f’cmrg and f’nof g, where gða1; � � � ; anÞ ¼ f ðπða1Þ; � � � ; πðanÞÞ for all ða1; � � � ; anÞ∈ Zn

k .
Since π is a permutation, we have

f ða1; � � � ; anÞ ¼ g
�
π−1ða1Þ; � � � ; π−1ðanÞÞ;

for all ða1; � � � ; anÞ∈ Zn
k which shows that f’cmrg and hence, f’cmrfπðf Þ. Since nof ðf Þ ¼

f ðxi; � � � ; xjÞand nof ðf Þ ¼ f ðxπðiÞ; � � � ; xπðiÞÞ, it follows nof ðgÞ≡ nof ðgÞand f’nof g.(iv) and (v)
– Let f ¼ x1 ⊕ x2 ⊕ x3ðmod 3Þ and g ¼ x1x2 ⊕ x1x3 ⊕ x2x3ðmod 3Þ. Then we have
fi←j ¼ 2xj ⊕ xmðmod 3Þ and gi←j ¼ 2xjxm ⊕ xjxjðmod 3Þ where fi; j;mg ¼ f1; 2; 3g. Clearly,
fi←jj←m

¼ gi←jj←m
¼ 0, and hence f’cmrg and f’nof g. One can show that there is no

transformation ψ ∈RAG, defined as in (5), for which g ¼ ψðf Þ. Consequently,
CMn

k : # RAG;NFn
k:# RAG and MNn

k : # RAG.(vi), (vii), (viii), (ix) and (xi) – Let
f ¼ x01x

1
2 ⊕ x02x

1
3x

2
4ðmod 3Þ and g ¼ x10x

1
2 ⊕ x02x

1
3x

1
4ðmod 3Þ be the functions from P4

3. Let

A ¼

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

1
CCA

Then clearly, f ðxÞ ¼ gðAxÞ and hence, f and g belong to the same equivalence class under
the transformation group LG4

3. Let c ¼ ð0; 0; 0; 1Þ. Then we have f ðxÞ ¼ gðx:I⊕ cÞ, which
shows that f and g belong to the same equivalence class under the transformation group CA4

3.
One can show that f’nof g. Example 3.5 shows that f:’mnrg. Consequently,
NFn

k: # MNn
k ;LG

n
k: # MNn

k and CAn
k: # MNn

k . Theorem 3.8 shows that NFn
k:#CMn

k ;

LGn
k: # CMn

k and CAn
k: # CMn

k .ðxÞ - Let us pick f ¼ x01x
0
2ðmod 2Þ and g ¼ x1x2ðmod 2Þ.

Clearly, f’cmrg, but nof ðf Þ ¼ x01:≡ x1 ¼ nof ðgÞ. ,
So, Theorem 3.10 summarizes results which determine the positions of the groups

NFn
k ;CM

n
k andMNn

k , with respect to the subgroups of RAG. It is well-illustrated by Figure 4,
in the case of Boolean functions.

4. Classification of Boolean functions by minor complexities
Table 2 shows the four classes in P2

2 under the equivalence ’cmr. The ’cmr-classes are
represented as union of several classes under the permuting arguments, according to
Theorem 3.10 (ii), which can be observed in Table 1 and Table 2, given below.

The number of types under permuting arguments, is an upper bound of the number of
equivalence classes induced by the relations ’nof ;’cmr and ’mnr (see Figure 4).

[0], ½x01x02�; ½x01x2; x1x02�; ½x1; x2�;
½x1 ⊕ x2�; ½x1 ⊕ x02�; ½x01 ⊕ x1x2; x

0
2 ⊕ x1x2�; ½x1 ⊕ x01x2�;

½x01 ⊕ x1x
0
2�; ½x1x2�; ½x01; x02�; [1].

Table 1.
The twelve classes in
P2
2 under the

permutating of
variables.
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In Table 3 the columns named SBn
2 and SPn

2 are calculated in [15] and they present
the number of classes under the complexities, determined by the number of
subfunctions and separable sets in the functions. It is surprising that for n#3 these
columns are same as the columns CMn

2 and MNn
2 , i.e. the number of classes are the

same, but these classes are very different as sets of functions, determined by these
complexities.

Figure 4 presents the subgroups of RAG and transformation groups whose invariants are
subfunction, and minor complexities of Boolean functions of n-variables. According to
Theorem 3.10 the group CMn

2 has three subgroups from RAG, namely: Sn
2 - the group of

permuting arguments, trivial group consisting of the identity map, and CFn
2 - the group of

[0, 1] ½x01x2 ; x1x02; x1 ⊕ x2; x1 ⊕ x02; x
0
1 ⊕ x1x2; x

0
2 ⊕ x1x2�;

½x1; x2; x01; x02 �; ½x1x2 ; x1 ⊕ x01x2; x
0
1 ⊕ x1x

0
2; x

0
1x

0
2 �:

N Sn
2 CMn

2 MNn
2 SBn

2 SPn
2

1 4 2 2 2 2
2 12 4 3 4 3
3 80 11 5 11 5
4 3984 * * 74 11
5 37 333 248 * * * 38

Figure 4.
Transformation

groups in Pn
2 .

Table 2.
The four classes in

P2
2 under the

cmr-complexity.

Table 3.
Number of equivalence

classes in Pn
2 under

transformation groups.
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complementing outputs. The groups NFn
2 and MNn

2 are not subgroups of any subgroup
of RAG.

Next, we turn our attention on classifying the functions with respect to their cmr-
complexity. This classification is based on the exhaustive Algorithm 1, given below.

Table 4 presents a complete classification of the Boolean functions of tree variables by
the minor complexities cmr andmnr. If we agree to regard each 23-tuple as a binary number
then the last column presents the vectors of values of all ternary Boolean functions in their
table representation with the natural numbers from the set f0; � � � ; 127g. According to
Theorem 3.9, if a natural number z; 0#z#255, presents a function fwhich belongs to a cmr-
class then the functionbf presented by 255− zbelongs to the same class. Thus the catalogue
contents the numbers#127, only (see the last column in Table 4). These numbers represent
the functions which preserve zero, i.e. the functions f for which f ð0; 0; 0Þ ¼ 0. This
classification shows that there are eleven equivalence classes under ’cmr and five classes
under ’mnr.

Theorem 3.8 shows that eachmnr-class is a disjoint union of several cmr-classes. Thus the
firstmnr-class consists of all the functions which belong to the first and the second cmr-class
(see fifth column in Table 4). The secondmnr-class is equal to the third cmr-class. The fourth
and the fifthmnr-classes are unions of three cmr-class, namely: sixth, seventh, and eight, and
ninth, tenth, and eleventh, respectively.

The main data structure which describes the nodes in the MDD of f is represented by a
record declared as follows:

The first field, named ess presents the number of essential variables in the minor
(located on the corresponding node) and the second field val is a natural number whose
k-ary representation is the last column B of the truth table (of size kn3ðnþ 1Þ) of
the minor.

Table 4 presents classification of ternary Boolean functions under the equivalences’cmr

and ’mnr, including the catalogue of the equivalence classes (last column). Let us choose a
natural number belonging to the seventh column of Table 4, say 24. It belongs to the row
numbered 6. The binary representation of 24 is 00011000, because 24 ¼ 1*24 þ 1*23. Hence,
the function f corresponding to 24 is evaluated by 1 on the fourth and fifth miniterms,
namely x01x2x3 and x1x

0
2x

0
3. Consequently, f ¼ x01x2x3 ⊕ x1x

0
2x

0
3ðmod 2Þ. Then we have

f2←1 ¼ f3←1 ¼ 0 and f3←2 ¼ x01x2 ⊕ x1x
0
2ðmod 2Þ. Clearly, cmrðf Þ ¼ 4, which is written in

the third cell of the sixth row. The MDD of f is shown in the second cell. The cmr-
equivalence class containing f consists of 18 functions, according to the fourth cell of the
sixth row and themnr-equivalence class of f contains 108 functions (see whole fifth column
of the table). The function x1x2x

0
3ðmod 2Þ is representative for this class (sixth cell). The

numerical list of the functions from this equivalence class is given in the last seventh cell of
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Table 4. The record of the function f is presented as follows f.ess53 and f.val524,
where k = 2 and B5 00011000.
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Table 4.
Minor classification of
ternary Boolean
functions.
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5. Conclusion
The transformation groups whose invariants are the minor complexities have only three
subgroups among the groups in RAG, namely trivial group (identity map), Sn

k and CFn
k ,

whereas the groups whose invariants are the subfunction complexities have three
subgroups more (see [15]). One of motivations to study the group NFn

k is that the
reductions are inexpensive and the number of classes is much smaller than the number of
classes under the subgroups of RAG, because the order of NFn

k is so large. As mentioned,
the number of equivalence classes underNFn

k equals to k
k. Hence, the order ofNFn

k is equal
to kk

n

=kk ¼ kk
n− 1

.
The most complex functions with respect to separable sets [15] are grouped in the largest

equivalence class. J. Denev and I. Gyudzhenov in [7] proved that for almost all the k-valued
functions all the sets of essential variables are separable. Similar results can not be proved for
the minor complexities. For example, in P3

2 the most complex functions belong to the class
numbered as 11 (see Table 4), which consists of 16 functions. This class is not so large. It
presents 1/16 of the all 256 ternary Boolean functions.
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