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Abstract
This work presents a system based on an ensemble of Convolutional Neural Networks (CNNs) and descriptors
for bioimage classification that has been validated on different datasets of color images. The proposed system
represents a very simple yet effective way of boosting the performance of trained CNNs by composingmultiple
CNNs into an ensemble and combining scores by sum rule. Several types of ensembles are considered, with
different CNN topologies along with different learning parameter sets. The proposed system not only exhibits
strong discriminative power but also generalizes well over multiple datasets thanks to the combination of
multiple descriptors based on different feature types, both learned and handcrafted. Separate classifiers are
trained for each descriptor, and the entire set of classifiers is combined by sum rule. Results show that the
proposed system obtains state-of-the-art performance across four different bioimage andmedical datasets. The
MATLAB code of the descriptors will be available at https://github.com/LorisNanni.

Paper type Original Article

1. Introduction
Despite strong advances in automatic image analysis in recent years, in the field of medicine,
expert clinicians remain the ones who typically make the final diagnostic determination of
medical images. Automatic and semi-automatic analysis is gaining in importance, however,
due to the massive growth in medical imaging technologies and thanks to some giant strides
in the fields of image processing, pattern recognition, and image classification, all of which
have made automatic analysis of medical images a viable alternative [1–3].

In general, bioimage processing often relies on approaches based on feature extraction
from images that contain important information for a particular diagnostic task. Some of the
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best feature extractionmethods for biological tissue analysis consider local textured patterns.
A large variety of textural features have been employed in biomedical imaging classification
systems, with some of these features combined together in ensembles under the assumption
that different textural features extract different types of information from the same image
[4,5]. Some typical methods for extracting textural features include Gabor filters and
Haralick’s co-occurrencematrix [6]. Other feature extractionmethods commonly used today are
the Scale-Invariant Feature Transform (SIFT) and Local Binary Patterns (LBP) along with its
many variants [7,8]. These feature extraction methods belong to what is often referred to as the
class of handcrafted descriptors, so named because the algorithms are designed by researchers
to detect specific characteristics considered important in the analysis of images.

Besides handcrafted features, some machine learning techniques have been developed that
learn features automatically. This class of so-called learned features are also widely used in
bioimage processing [9,10], but they tend to be limited in power because they rely heavily on the
datasetused for training.Thisproblemcanbeovercomebytrainingonavery largedataset (or an
ensemble of datasets) containinga broad set of images so that the system learns awidevariety of
different patterns. In this way, the learned features become independent of any specific dataset
and can be considered as general feature extractors. Like the handcrafted features mentioned
above, these learned features canbe used aloneor in combinationwith other sets of features, both
handcrafted and learned, to analyze new problems. Some examples along these lines include [9],
where learned features are used for the detection of ovarian carcinomas, and [10], where learned
features are combined with handcrafted features for histopathology image representation.

A powerful class of learned descriptors has recently been proposed that are based on the
deep learning paradigm [11]. Deep learning has proven to be extremely effective in several
image classification tasks, including medical image analysis [12]. Some examples include the
detection/counting of mitotic events, the segmentation of nuclei, and many cancerous vs.
noncancerous tissue evaluations [13].

A deep learning architecture that has been studied extensively is the Convolutional Neural
Network (CNN) [14], which is a multi-layered image classification technique that incorporates
spatial context andweight sharing between pixels. ACNN learns the optimal image features for a
specific imageclassificationproblembyadoptinganeffective representationof theoriginal image.
Inspiredby the process of visual perception in humanbeings, it requires little to no preprocessing.
The basic components of a CNN are stacks of different types of specialized layers (convolutional,
activation, pooling, fully-connected, softmax, etc.) that are interconnected andwhose weights are
trained using the backpropagation algorithm. The deepest layers of the network function as low-
level feature extractors. The training phase of a CNN requires huge numbers of labelled data to
avoid the problem of over-fitting; however, once trained, CNNs are capable of producing accurate
and generalizablemodels that achieve state-of-the-art performance in general pattern recognition
tasks. Some examples include LeNet [15], the first CNN proposed to classify handwritten digits;
AlexNet [16], a deep network designed for image classification; ZFNet [17], a newer model that
outperforms AlexNet; VGGNet [18], which increases depth using 3 3 3 convolution filters;
GoogLeNet [19], which includes inceptionmodules (which is a new organizational structure); and
ResNet [20], a residual network that is much easier to optimize than VGGNets. The CNN
architecture and the cited examples are discussed in more detail in Section 2.

When deep neural networks are trained on large datasets of images, the first convolutional
filters learned by the network often resemble either Gabor filters or color blobs that are easily
transferable to many other image tasks and datasets [21]. Pre-trained models can thus be used to
extract learned features from novel sets of images, and these features can then be fed into other
classifiers, similar to theway handcrafted features are used. Conversely, features computed in the
last layer of a pretrained network are strongly dependent on the dataset used to train the deep
learnerandthuson thespecific classificationproblemrepresentedbyagivendataset.Nonetheless,
the outputs of these layers can be used for other tasks if CNN fine-tuning is exploited.
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All three deep learning methods described above are used in medical and bioimage
classification [22]. To summarize the possibilities mentioned so far: a) deep learners can be
trained on images from scratch (as in [23]); b) pre-trainedCNNs can function as additional feature
extractors that can be combined with existing handcrafted image features (as in [24,25]); and
c) the outputs of pre-trained CNNs can be fine-tuned by another simpler classifier, such as SVM,
on novel target images (as in [26,27]). Yet another class of approaches combines different CNN
architectures to exploit the strengths and offset the weaknesses of a given architecture [27].

In this work, we investigate methods for building ensembles of CNNs by leveraging pre-
trained CNNs. We consider several different training patterns and experiments using
different learning rates, batch sizes, and topologies. What is interesting is that this simple
approach produces a very high performing system, one that strongly outperforms the single
best CNN trained specifically on a given dataset. Of course, there are both pros and cons
involved in combining different CNNs. Although ensembles of CNNs perform exceptionally
well, training such models requires high computational power (in this work we used three
TitanX GPUs). Moreover, the total size of the network set is quite large, requiring
considerable computational power for input classification. Hence, this approach is suitable
only for problems where computation time is not critical.

Aside from exploring different ensembles of CNNs, we also consider combining
heterogeneous handcrafted descriptors for bioimage classification. The best system
proposed in this work combines both learned and handcrafted descriptors. For each
descriptor, a different classifier is trained, and the set of classifiers along with the
classification results from the deep learners are combined by sum rule. The handcrafted
descriptors tested in this paper are summarized in Section 3, and the power of this approach is
validated on four different biomedical color datasets.

We wish to stress that the main goal of the proposed system is to produce a powerful
general-purpose image classification system able to work out-of-the-box (i.e. requiring little to
no parameter tuning) on any bioimage classification problem.We strive to produce a general-
purpose system that performs competitively against less flexible systems that have been
optimized for very specific image problems and datasets. Experimental results demonstrate
that the proposed system obtains state-of-the-art performance in every tested bioimage
problem. Yet the same set of descriptors is used in all the tested datasets, demonstrating the
generalizability of the proposed approach.

2. Deep learned features
CNNs are a class of deep feed-forward neural networks. Likemost neural networks, CNNs are
composed of interconnected neurons that have inputs with learnable weights, biases, and
activation functions.

CNN layers have neurons arranged in three dimensions: width, height and depth. This means
that every layer in a CNN transforms a 3D input volume into a 3D output volume of neuron
activations. CNNs are built with five classes of layers: convolutional (CONV), activation (ACT),
pooling (POOL), followedbya last stage, includingFully-Connected (FC), and classification (CLASS).

The CONV layer is the core building block of a CNN and is also what makes CNNs so
computationally expensive. These layers compute the outputs of neurons that are connected
to local regions by applying a convolution operation to the input. The spatial extent of
connectivity of these local regions is a hyperparameter called the receptive field, and a
parameter sharing scheme is used in CONVLayers to control the number of parameters. This
means that the parameters of CONV layers are shared sets of weights (also called kernels or
filters) that have relatively small receptive fields.

POOL layers perform non-linear downsampling operations. Max pooling is the most
common non-linear operation: it partitions the input into a set of non-overlapping rectangles
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and outputs the maximum for each group. In this way POOL reduces the spatial size of the
representation while simultaneously reducing 1) the number of parameters, 2) the possibility
of overfitting, and 3) the computational complexity of the network. It is common practice to
insert a POOL layer between CONV layers.

ACT layers apply some activation function, such as the non-saturating ReLU
(Rectified Linear Unit) function f ðxÞ ¼ maxð0; xÞ or the saturating hyperbolic tangent
f ðxÞ ¼ tanhðxÞ; f ðxÞ ¼ jtanhðxÞj or the sigmoid function f ðxÞ ¼ ð1þ e−xÞ−1.

FC layers have neurons that are fully connected to all the activations in the previous layer
and are applied after CONV and POOL layers.

In this work, we test and combine the following CNN architectures:

• AlexNet [16]: this is the 2012 winner of the ImageNet ILSVRC challenge. AlexNet is a
popular CNN that is composed of both stacked and connected layers. It includes five
CONV layers followed by three FC layers, with some max-POOL layers inserted in the
middle. A rectified linear unit nonlinearity is applied to each convolutional along with
a fully connected layer to enable faster training.

• GoogleNet [19]: this is the 2014 winner of the ImageNet ILSVRC challenge. The main
novelty of this CNN is the introduction of an inception module (INC), i.e. a subnetwork
consisting of parallel convolutional filters whose outputs are concatenated. INC greatly
reduces the number of parameters required (much lower than AlexNet). GoogleNet is
composed of 22 layers that require training (27 layers in total, counting the POOL layers).

• VGGNet [18]: this is a CNN that placed second in ILSVRC 2014. The two best-
performingVGGmodels (VGG-16 andVGG-19), with 16 and 19wt layers, respectively,
are available as pretrained models. Both models are very deep and include 16 CONV/
FC layers. The CONV layers are extremely homogeneous and use very small (3 3 3)
convolution filters. A POOL layer is inserted after two or three CONV layers (instead
after each CONV layer as is the case with AlexNet).

• ResNet [20]: this is the winner of ILSVRC 2015. This network is approximately twenty
times deeper thanAlexNet and eight times deeper thanVGGNet. Themain novelty of this
CNN is the introduction of residual (RES) layers, making it a “network-in-network”
architecture. ResNet uses special skip connections and batch normalization, and the FC
layers at the end of the network are substituted by global average pooling. Instead of
learning unreferenced functions, ResNet explicitly reformulates layers as learning
residual functions with reference to the layer inputs. As a result, ResNet is much deeper
thanVGGNet, although themodel size is smaller and thuseasier tooptimize thanVGGNet.

• Inception [19]: InceptionV3 is a variant of GoogleNet based on the factorization of 73
7 convolutions into two or three consecutive layers of 3 3 3 convolutions.

• IncResv2 [28]: Inception-ResNet-v2 is an Inception style networks that utilize residual
connections instead of filter concatenation.

As noted in the introduction, the learning effectiveness of a CNN depends on the availability
of large training data. Data augmentation is one effective way to expand training data when
necessary and to reduce overfitting during CNN training by artificially expanding the
training set using perturbations of individual images [16]. Data augmentation applies
transformations and deformations to the labeled data, thus producing new samples as
additional training data. A key attribute of the data augmentation process is that the labels
remain unchanged after applying the transformations. In this work we perform random data
augmentation with horizontal and vertical flipping, rotation in a range of 108, translation of a
maximum of five pixels, and scaling in a range of [1,2].
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Fine-tuning a CNN is a procedure that essentially restarts the retraining process of a
pretrained network so that it learns a different classification problem. We adopt the Two-
Round Tuning for fine-tuning a CNN. With Two-Round Tuning, the first round of tuning is
performed by training a CNN using a leave-one-out dataset strategy, e.g. by including in the
training set all the images from the dataset summarized in Table 2 except for the target
dataset. The final number of classes becomes the sum of all the classes from each
classification problem. The second round of tuning is the same as in One Round Tuning and
involves only the training set of the target problem.

In keepingwith the rationale of the DataAugmentation step, we use the following datasets
in the first round of tuning:

• PAP: the PAP SMEAR dataset [29], which contains 917 images acquired during Pap
tests to identify cervical cancer diagnosis (available at http://labs.fme.aegean.gr/
decision/downloads);

• LG: the “Liver gender” [30] dataset, which includes 265 images of liver tissue sections
from 6-month male and female mice on a caloric restriction diet (the classes are the 2
genders);

• LA: the “Liver aging” [30] dataset, which includes 529 images of liver tissue sections
from female mice of 4 ages on an ad-libitum diet;

• BR: the BREAST CANCER dataset [31], which contains 1394 images divided into the
control, malignant cancer, and benign cancer classes;

• HI: the HISTOPATHOLOGY dataset [32], which contains 2828 images of connective,
epithelial, muscular, and nervous tissue classes.

• RPE: a dataset composed of 195 human stem cell-derived retinal pigmented epithelium
images that were divided into 16 subwindows with each subwindow divided into four
classes by two trained operators (available at https://figshare.com/articles/
BioMediTech_RPE_dataset/2070109).

We fine-tune the weights of the pretrained CNNs by fixing the deep CONV layers of the
network and by fine-tuning only the higher-level FC layers since these layers are specific to
the details of the classes contained in the target dataset. The last FC layer is designed to be the
same size as the number of classes in the new dataset. All the FC layers are initialized with
random values and trained from scratch using the Stochastic Gradient Descent (SGD)
algorithm with data from the target training set.

3. Handcrafted features
In Table 1 we summarize the handcrafted descriptors used in our tests, along with the
parameter sets used to extract each descriptor. Each descriptor is trained on an SVM,
and only the training data is used to fix its parameters. Since we are working with RGB
color datasets, each texture descriptor is applied separately to each RGB channel, with
the final score given by the sum rule of the three classifiers trained with the three set of
features.

As it can be observed in Table 1, many of the handcrafted texture descriptors are based on
Local Binary Patterns (LBP), a descriptor that has achieved great success due to its
computational efficiency and discriminative power. The traditional LBP [44] is expressed as

LBPP;R ¼
XP−1
P¼0

sðxÞ2P (1)
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where x ¼ qp − qc is the difference between the intensity levels of a central pixel (qc) and a set
of neighbouring pixels (qp). A neighbourhood is defined by a circular region of radius R and P
neighbouring points. The function s(x) in Eq. (1) is defined as:

sðxÞ ¼
�
1; x≥ 0
0; otherwise

(2)

LBP descriptors are the histograms of these binary numbers.

3.1 The Local Ternary Pattern (LTP)
LTP [33] is a ternary variant of LBP and is designed to reduce the noise in the feature vector
when uniform regions are analyzed. LTP proposes a three-value coding scheme that includes
a threshold around zero for the evaluation of the local gray-scale difference by adding to
Eq. (2) the threshold τ:

sðxÞ ¼
8<
:

1; x≥ τ
0; jxj≤ τ
�1; x≤ � τ

(3)

3.2 Multithreshold Local Phase Quantization (MLPQ)
MLPQ [34] extends themulti-threshold approach described for LBP to the LPQ feature [45,46]
that is based on the phase of the Short-Term Fourier Transform (STFT) evaluated on a

Name Parameters Source Section

LTP Multiscale Uniform LTP with two (R,P) configurations: (1, 8) and (2, 16),
threshold 5 3.

[33] 3.1

MLPQ Ensemble of LPQ descriptors obtained by varying the filter sizes, the scalar
frequency, and the correlation coefficient between adjacent pixel values.

[34] 3.2

CLBP Completed LBP with two (R,P) configurations: (1,8) and (2,16). [35] 3.3
RIC Multiscale Rotation Invariant Co-occurrence of Adjacent LBP with

R ∈ {1, 2, 4}.
[36] 3.4

FBSIF Extension of the BIF by varying the parameters of filter size (SIZE_BSIF,
size ∈ {3, 5, 7, 9, 11}) and the threshold for binarizing (FULL_BSIF,
th ∈ {�9, �6, �3, 0, 3, 6, 9}).

[37] 3.5

AHP Adaptive Hybrid Pattern with quantization level5 5 and 2; the (R,P) configurations
are (1, 8) and (2, 16).

[38] 3.6

GOLD Ensemble of Gaussians of LOcal Descriptors extracted using the spatial pyramid
decomposition.

[39] 3.7

HOG Histogram of Oriented Gradients with 30 cells (5 by 6). [40] 3.8
MOR A set of MORphological features. [41] 3.9
CLM CodebookLess Model. We use the ensemble named CLoVo_3 in [15] based on e-SFT,

PCA for dimensionality reduction, and one-vs-all SVM for the training phase.
[42] 3.10

LET Same parameters used in the source code of [43] [43] 3.11

Dataset #C #S Size URL for Download

BGR 3 300 1280 3 960 https://zenodo.org/record/834910#.Wp1bQ-jOWUl
LY 3 375 1388 3 1040 ome.grc.nia.nih.gov/iicbu2008
LAR 3 1320 100 3 100 https://zenodo.org/record/1003200#.WdeQcnBx0nQ
CO 8 5000 150 3 150 zenodo.org/record/53169#.WaXjW8hJaUm

Table 1.
Summary Handcrafted
Descriptors.

Table 2.
Descriptive Summary
of the Datasets.
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rectangular neighborhood of size R. The MLPQ features used in our experiments are
computed using parameter belonging to the following ranges: τ ∈ {0.2, 0.4, 0.6, 0.8, 1},
R∈ {1, 3, 5}, a∈ {0.8, 1, 1.2, 1.4, 1.6} and ρ ∈ {0.75, 0.95, 1.15, 1.35, 1.55, 1.75, 1.95}. Such sets
were proposed in [47].

3.3 Completed LBP (CLBP)
CLBP, proposed in [35], encodes a texture by means of two components: the difference sign
and the different magnitude that is computed between a reference pixel and all the pixels
belonging to a given neighborhood. CLBP represents a local region by its centre pixel
(CLBP-C) and a local difference sign-magnitude transform (LDSMT). This is what produces
the difference signs and the difference magnitudes.

Two operators, CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M), are defined for
the difference signs and the difference magnitudes. Since all three descriptors (CLBP_C,
CLBP_S and CLBP_M) are in binary format, they can be combined to form the final CLBP
histogram.

Given a central pixel gc and its P evenly spaced circular neighbors gc, gp, p,1, . . . ,P-1, the
difference between gc and gp can be calculated as dp ¼ gp − gc and be decomposed into two

components defining the LDSMT transform: dp ¼ Sp*mp and

�
Sp ¼ signðdpÞ
mp ¼

��dp�� ,

Sp ¼
�

1; dp ≥ 0
�1; dp < 0

(4)

where Sp is the sign of dp, and mp is the magnitude of dp. Thus, the LDSMT transforms
the vector ½d0; . . . ; dP�1� into a sign vector ½S0; . . . ; SP�1� and a magnitude
vector ½m0; . . . ; mP�1�.

The CLBP_S operator is the traditional LBP operator defined in Eq. (1). The CLBP_M is
defined as:

LBPMP;R
¼

XP−1
P¼0

tðmp; cÞ2P

tðx; cÞ ¼
�
1; x≥ c

0; x < c
(5)

where c is the mean value of m.
The center pixels represent the image gray level and thus contains discriminant

information. These values are converted into a binary code by global thresholding, which
makes them consistent with CLBP_S and CLBP_M as CLBP CP;R ¼ tðgc; c1Þ, where t is the
threshold defined in Eq. (5), and c1 is the average gray level of the white image.

Combining CLBP_S, CLBP_M, and CLBP_C features into joint or hybrid distributions
results in significant improvement for rotation invariant texture classification. The CLBP_S,
CLBP_M, and CLBP_C histograms are concatenated to obtain the CLBP descriptor.

3.4 Multiscale Rotation Invariant Co-occurrence of Adjacent LBP (RIC)
RIC [36] considers the co-occurrence in the context of LBP features, or the spatial relations
among pixels. This feature adds rotational invariance for angles that are multiples of 458. RIC
depends on two parameters, namely, LBP radius and the displacement among the LBPs. The
values used in our experiments are: (1, 2), (2, 4) and (4, 8).
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3.5 Full BSIF (FBSIF)
FBSIF [37] is an extension of the Binarized Statistical Image Feature (BSIF) [48], that assigns
each pixel of the input image a n-bit label obtained by means of a set of n linear filters. Each
filter operates on a neighborhood of l 3 l pixels around the element they should give the label.
This n-bit label can be formalized as:

s ¼ WX (6)

where X is a vector of length l2 3 1 obtained from the neighborhood, while W is a n 3 l2

matrix including the filters vector notations. FBSIF operates by evaluating BSIF using
several values of the filter size (SIZE_BSIF) and a binarization threshold (FULL_BSIF).
Values considered in this work are: SIZE_BSIF∈ {3, 5, 7, 9, 11}, FULL_BSIF∈ {�9,�6,�3,
0, 3, 6, 9}. Each combination of size and threshold is fed to a separate SVM: the SVMs are then
combined by sum rule.

3.6 Adaptive Hybrid Pattern (AHP)
AHP [38] descriptors were created to overcome twomain drawbacks of the LBP feature: 1) its
noisy behavior in quasi-uniform regions and 2) its reactivity, that is, the strong variations in
the descriptor that are possibly induced by small variation in the input image, which is caused
by the use of quantization thresholds.

AHP overcomes both problems by using a Hybrid Texture Model (HTD) composed of local
primitive features and global spatial structure and then by applying an adaptive quantization
algorithm (AQA) to improve the noise robustness of the angular space quantization. In this way,
the vector quantization thresholds are adaptive to the content of the local patch. AQA extracts
the discriminative texture information provided by primitive microfeatures.THTD is defined as:

THTD ≈Tglobal þ Tlocal (7)

where THTD represents the texture, Tglobal the global texture information, and Tlocal the local
texture information. Tglobal is the joint distribution of the global difference between gray
values of the circular symmetric neighborhoods and the mean value from the whole texture
image. Tlocal is the joint distribution of the local differences between the gray value of the
center pixel and the gray values of the circularly symmetric neighborhoods.

The length of the feature histogram of the whole image is reduced by splitting the global
pattern and the local pattern into multiple binary patterns using the threshold calculations in
[49] and [50].

3.7 Gaussian of Local Descriptors (GOLD)
GOLD [39] is based on a four-step algorithm: i) evaluation of SIFT features; ii) spatial pyramid
decomposition; iii) parametric probability density estimation; iv) the covariance matrix is
projected onto the tangent Euclidean space in order to vectorize the feature. In other words,
GOLD descriptors are obtained by extracting some descriptors from an image to obtain
D ¼ fD1; . . . ;Dℕg, where Di ∈ℜn, by collecting and weighting them in a spatial pyramid,
and then by describing each subregion by the estimated parameters of a multivariate
Gaussian distribution. To vectorize the descriptors, the covariance matrix is projected onto a
Euclidean space and concatenated to the mean vector to obtain the final descriptor of size
(n2 þ 3n)/2. Finally, the feature vector is fed into an SVM with a histogram kernel.

3.8 Histogram of Oriented Gradients (HOG)
HOG [40] groups pixels into small windows andmeasures intensity gradients in each of them.
It is possible to viewHOG as a simplified version of SIFT. HOG calculates intensity gradients,
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pixel by pixel; and the selection of a corresponding histogram bin for each pixel is based on
the gradient direction. A histogram is then evaluated for each window, leading to the final
descriptor. Windows of size 5 3 6 are used in our experiments.

3.9 Color descriptor (COL)
COL, proposed in [51], is a simple and compact descriptor, acquired combining statistical
measures extracted from each color channel in the RGB space. The final descriptor is
obtained as the concatenation of several measures: the mean, the standard deviation, the 3rd
and 5thmoments of each color channel and themarginal Histograms (8 bins per channel) [51].

3.10 Morphological descriptor (MOR)
MOR, proposed in [41], is a set of measures extracted from a segmented version of the image,
including the aspect ratio, number of objects, area, perimeter, eccentricity, and other
measures.

3.11 CodebookLess Model (CLM)
CLM [42] is based on an image modeling method that can represent an image by means of a
single Gaussian. This is obtained by first evaluating SIFT features on a regular grid placed on
the image. Thus, CLM is a dense sampling features model, and fitting them using a Gaussian
model. The main difference between CLM and the other widely used dense sampling method,
such as the BoF approach [52], is the absence of a codebook.

According to the experiments reported in [24], we select for CLM the ensemble named
CLoVo_3 in [24] based on e-SFT, PCA for dimensionality reduction and one-vs-one SVM for
the training phase.

3.12 LETRIST descriptor (LET)
LET, proposed in [43], is simple but effective representation that encodes the joint
information within an image across feature and scale spaces. We use the default values
available in the MATLAB toolbox.

4. Materials
Several medical datasets were used to test our system and demonstrate the generalizability of
our approach. Each dataset contains different types of medical images. For the sake of easy
comparisons, the datasets used in our experiments were selected because they are publicly
available:

• LY: the LYMPHOMA dataset [53], which includes 375 images of malignant
lymphoma subdivided in three classes: CLL (chronic lymphocytic leukemia), FL
(follicular lymphoma), and MCL (mantle cell lymphoma).

• BGR: the BREAST GRADING CARCINOMA [54], which is a medium size dataset
containing 300 images (Grade 1: 107, Grade 2: 102, and Grade 3: 91 images) of
resolution 1280 3 960 corresponding to 21 different patients with invasive ductal
carcinoma of the breast.

• LAR: the LARYNGEAL dataset [55], which contains a well-balanced set of 1320
patches extracted from the endoscopic videos of 33 patients affected by laryngeal
squamous cell carcinoma (SCC). The patches are relative to four laryngeal tissue
classes. LAR contains color images. In our experiments with this dataset each
descriptor is separately extracted from each color channel.
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• CO: the COLORECTAL dataset [56], which is a collection of textures obtained by
manual annotation and tessellation of histological images of human colorectal cancer.

Table 2 summarizes some important characteristics of each dataset including the number of
classes (#C), the number of samples (#S) (i.e. the number of images), the image size, and the
URL for downloading the dataset. The testing protocol used in our experiments is the fivefold
cross-validation method except in those case where the database is specifics its own protocol.

5. Experimental results
The experimental evaluations reported in this section are intended first to compare the
performance of handcrafted descriptors to deep learned descriptors on several cancer data
analysis classification tasks and second to evaluate the performance of several ensembles
based on the fusion of classifiers. Our main objective is to design a method that is both robust
and effective on different classification problems. To assess the generalizability and robustness
of our system, our best performing method is finally compared with several state-of-the-art
results published by different researches on the same datasets. Note: Before each fusion, the
scores of the classifiers of each descriptor are normalized to mean 0 and standard deviation 1.
Experiments reported below were statistically validated using the Wilcoxon signed rank test.

In the first experiment, reported in Table 3, we evaluate the performance (using accuracy
as the performance indicator) of the baseline handcrafted descriptors described in Section 3.
Moreover, the performance obtained by the following ensembles of handcrafted methods are
compared:

• FH: the fusion by sum rule of the following handcrafted methods LTP, CLBP, RIC,
LET, MOR, AHP, COL, MLPQ and FullBSIF. We have not use GOLD and CLM in FH
since they are computational expensive. Note: the scores of each method are
normalized to mean zero and standard deviation 1 so that the importance of MLPQ
and FullBSIF (that are methods based on ensemble combined by sum rule) is equal to
the other approaches;

• FHþ CLM: sum rule among the methods belonging to FH and CLM, i.e. the sum rule
among the nine methods of FH and CLM;

LY CO BGR LAR

LTP 85.33 90.40 87.54 71.97
MLPQ 92.27 93.58 90.54 82.27
CLBP 86.67 92.04 89.54 72.27
RIC 85.87 91.56 91.87 90.68
LET 92.53 93.18 93.54 90.76
MOR 84.53 93.30 91.54 79.85
AHP 93.87 94.16 91.37 85.30
COL 91.47 92.30 90.71 85.30
FBSIF 92.53 93.42 88.00 88.56
GOLD 53.07 83.58 75.33 90.61
CLM 74.40 89.60 86.33 87.58
FH 95.20 95.18 91.67 91.29
FHþCLM 94.93 95.08 91.67 92.12
FHþCLMþGOLD 93.60 94.92 92.00 93.26
PREV 92.00 93.74 87.00 92.05
PREV1 92.00 94.68 88.67 92.58

Bold values are highest performance in the columns.

Table 3.
Handcrafted
descriptors.
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• FH þ CLMþGOLD: sum rule among the methods belonging to FH, GOLD and CLM;

• PREV: the ensemble of handcrafted features proposed in [24];

• PREV1: ensemble of handcrafted features proposed in [57].

Clearly, the fusion approaches FH and FH þ CLMþGOLD works better (Wilcoxon signed
rank test – p-value of 0.05) than the stand-alone methods and the previous handcrafted
ensembles PREV and PREV1.

In the second experiment, see Tables 4 and 5, we test the feasibility of building an
ensemble of convolutional neural networks1 as follows:

• Training CNNs using different learning rates (LR), i.e. 0.001 & 0.0001;

• Training CNNs using different batch sizes (BS), i.e. 10, 30, 50 and 70;

• Training CNNs using different topologies.

In Table 4 we report experiments using standard tuning. In Table 5 we report the
performance of the Two-Round tuning detailed in Section 2.

The following methods are also reported in Tables 4 and 5:

• SB: the single best CNN configuration in that dataset. Thismethod is clearly overfitted
since we report the best result on the testing set after running different parameter
configurations and choosing the best one. It is important to report SB as baseline
performance for the proposed ensemble.

• AB: best average CNN configuration in all the datasets.

• Fus: fusion among all the different CNNs trained varying the parameter configuration.
If the CNN does not converge (i.e. it produces random results on the training data,
which usually happens with AlexNet and VggNet with LR 5 0.001), the CNN is
excluded from the ensemble. Note that it is not always feasible to train a CNN with a
large batch size. In other words, if for a given BS we obtain a “GPU out of memory”
error message, we discard that CNN configuration.

• FCN-st: fusion among the methods Fus of the all CNN topologies trained using
standard tuning (column All) or all the topologies trained using standard tuning
except AlexNet (column NoAlex). The scores of each given CNN topology are

GoogleNet ResNet50 ResNet101 Inception
SB AB Fus SB AB Fus SB AB Fus SB AB Fus

LY 82.93 82.93 82.93 86.40 86.40 90.67 86.40 86.40 86.13 87.47 87.47 86.93
CO 95.60 95.60 96.30 95.42 95.42 96.40 92.92 92.92 94.68 95.02 92.82 96.40
BGR 93.00 92.67 94.33 91.33 90.33 94.00 93.33 93.33 93.00 93.67 93.67 95.00
LAR 92.35 90.83 91.97 92.20 92.05 93.41 93.64 93.64 93.79 92.73 89.77 93.56

AlexNet VGG16 VGG19 IncResv2 FCN-st
SB AB Fus SB AB Fus SB AB Fus SB AB Fus All NoAlex

LY 82.40 82.40 80.00 80.80 80.80 85.07 82.40 82.40 86.13 84.80 84.80 85.87 93.87 93.60
CO 94.22 94.22 95.14 96.14 96.14 96.88 95.94 95.26 96.76 93.58 93.58 95.16 97.26 97.32
BGR 92.00 91.00 91.33 93.00 93.00 95.00 93.67 93.67 91.67 91.00 91.00 90.67 96.00 96.00
LAR 90.68 89.39 90.08 93.33 91.52 91.82 94.24 93.26 95.38 94.62 94.62 94.39 94.70 94.85

Bold values are highest performance in the columns.
Table 4.

Standard tuning.
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normalized considering how many CNNs of that topology are effectively used in the
fusion Fus (i.e. by excluding all CNNs that produce random results on the training set
or an out of memory error message).

• FCN-Two: fusion among the methods Fus of the all CNN topologies trained using
Two-round tuning (column All) or all the topologies trained using Two-round tuning
except AlexNet (column NoAlex). The scores of each given CNN topology are
normalized considering how many CNNs of that topology are effectively used in the
fusion Fus (i.e. by excluding all CNNs that produce random results on the training set
or an out of memory error message).

Notice that Two-Round Tuning is applied on a reduced number of topologies due to
computational issues.

The following conclusions can be drawn from the results reported in Tables 4 and 5:

• For each topology, Fus outperforms AB (Wilcoxon signed rank test – p-value of 0.05);

• FCN outperforms each Fus (Wilcoxon signed rank test - p-value of 0.05);

• FCN-two obtains performance similar to FCN-st.

FCNþ
Here1 Here2All NoAlex

LY 94.67 94.93 97.33 96.53
CO 97.23 97.50 97.26 97.20
BGR 96.33 96.00 95.33 95.33
LAR 94.77 94.85 95.38 95.45

Bold values are highest performance in the columns.

Methods LY CO BGR LAR

Here1 97.33 97.60 95.00 95.45
[57] 92.00 96.84 91.67 95.18
[24] 90.67 93.98
[58] 96.80
[1] 70.9
[4] 66.0
[56] 87.4
[59] 90.93

Bold values are highest performance in the columns.

FH
FCNþ

Here1 Here2All NoAlex

LY 0.927 0.919 0.923 0.959 0.947
CO 0.944 0.968 0.970 0.970 0.969
BGR 0.873 0.940 0.939 0.929 0.929
LAR 0.883 0.930 0.931 0.942 0.944

Bold values are highest performance in the columns.

Table 6.
Ensemble

proposed here.

Table 7.
Comparison with other

state-of-the-art
approaches; accuracy

is used as the
performance indicator.

Table 8.
Ensemble tested here,

k-statistic as
performance indicator.
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In Table 6 the ensemble of CNNs is combined with other methods. The ensembles evaluated
in Table 6 are the following:

• FCNþ: sum rule among the methods that belong to FCN-st and FCN-Two;

• Here1: sum rule between (FCNþ NoAlex) and FH; before fusion the scores of (FCNþ
NoAlex) and FH are normalized to mean 0 and standard deviation 1;

• Here2: sum rule between (FCNþ NoAlex) and (FHþ CLMþGOLD); before fusion the
scores of (FCNþ NoAlex) and FH are normalized to mean 0 and standard deviation 1;

In Table 7 we compare our ensemble Here1 with the literature, for a fair comparison we have
reported methods based on the same testing protocol used to assess the performance of our
approaches.

The following conclusions can be drawn from the results reported in Tables 6 and 7:

• Here1 and Here2 outperform FCNþ; since Here1 is simpler then Here2 our suggestion
is to use Here1;

• Here1 obtains state-of-the-art-performance; e.g. in [55] a median F-measure of 92 is
obtained in the LAR dataset, while our ensemble obtains an F-measure of 95.2.

Finally, in Table 8, we report the performance obtained by some ensemble proposed in this
paper using the Kappa statistic [60] to measure the agreement between true and predicted
class labels.

The conclusions that can be drawn by the results reported in Table 8 are similar to those
that can be drawn by the performance reported in Table 6.

To better motivate the reason of the good performance of the ensemble of CNNs we
calculate the Yule’s Q-statistic [61] among the methods that build the ensemble. The Q-
statistic is used to provide information about the correlation among the output of different
classifiers. The average Q-statistic among the different CNNs that build FCN-st is 0.7098,
hence the different CNNs brings different information and their combination permits to boost
the performance of the stand-alone CNN.

6. Conclusion
In this work an ensemble of CNNs is proposed for cancer related color datasets. The ensemble
is built in a very simple way by training and comparing the performance of CNNs using
different learning rates, batch sizes, and topologies. The set of CNNs is simply combined with
the sum rule. The most important finding of this work is that this simple ensemble
outperforms the best stand-alone CNN. When the ensemble of CNNs is combined with other
features based on handcrafted features, the final ensemble obtains state-of-the-art
performance on all the four tested datasets. For each handcrafted features a different
support vector machine is trained, than the set of SVMs is combined by sum rule; also, the
fusion between deep learning ensemble and handcrafted features ensemble is performed by
sum rule. Notice that, before the fusion, the set of scores of each ensemble is normalized to
mean 0 and standard deviation 1.

In the future, we plan to develop and test different approaches for representing images
using CNNs. Features extracted from these CNNs will then be used to train SVM classifiers.
To reproduce our experiments, MATLAB source code will be available at https://github.com/
LorisNanni.

Note
1. All the CNN are implemented using the MathWorks Neural Network Toolbox.
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