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Abstract
This paper presents a new algorithm for detecting and characterizing potholes and bumps directly from noisy
signals acquired using an Accelerometer. A wavelet transformation based filter was used to decompose the
signals into multiple scales. These coefficients were correlated across adjacent scales and filtered using a
spatial filter. Road anomalies were then detected based on a fixed threshold system, while characterizationwas
achieved using unique features extracted from the filtered wavelet coefficients. Our analyses show that the
proposed algorithm detects and characterizes road anomalies with high levels of accuracy, precision and low
false alarm rates.
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1. Introduction
Autonomous vehicles are vehicles capable of sensing their environment and navigating
without human input under different terrains, particularly over asphalt roads. The capacity
to autonavigate greatly depends on the vehicle’s ability to monitor and accurately interpret
road surface conditions [1]. Thus, developing effective road surface monitoring mechanisms
will greatly improve the viability of autonomous vehicles, while contributing to the reduction
of related road accidents around the world [2–7].

In monitoring road surfaces, accelerometers are frequently proposed for use in
autonomous vehicles [8,2,9–11]. An accelerometer is a device that measures the
acceleration of a body (for example, a vehicle, an aircraft or a rocket) relative to g-force
[12]. The output of an accelerometer can be viewed as a series of time sampled measurements
influenced by the movement of an observed body (a vehicle in this case) in three dimensional
space. However, a familiar and widespread problem with processing measurements from an
accelerometer lies in the noisy nature of the measurements [2]. The randomness in
acceleration signals often makes road anomaly detection a difficult process, while rendering
characterization an even more difficult and sometimes impossible task [3–6]. In this case, we
refer to detection as the identification of an anomaly, while characterization is defined as the
recognition of the type of sensed anomaly (in this case if it is either a pothole or a bump). Thus,
providing new methods for improving road anomaly detection and characterization
motivated the work reported in this paper.

In this regard, we propose a Road Anomaly Characterization Algorithm (RACA) based on
the Wavelet Transformation Scale Space Filtering (SSF) algorithm. The SSF algorithm
processes the acceleration signals by decomposing them into multiple scales. It proceeds by
correlating the decomposed wavelet coefficients of the signal across adjacent scales and then
filtering the noisy samples via a well-designed spatial filter. The SSF algorithm feeds a Road
Anomaly Detection Algorithm (RADA) to detect road anomalies via a fixed threshold
technique, while feeding RACA to characterize road anomalies. RACA achieves
characterization using two unique features to differentiate potholes from bumps.
Following our new approach, it is noted that the following contributions have been made:

(1) A new approach for road anomaly detection and characterization has been developed
based on the application of Wavelet Transformation theory. To the best of the
author’s knowledge, this investigation involving the use of the WT based filter for
characterizing accelerometer based dataset marks the first attempt in this regard.
The results obtained also indicate positive strides in the effort towards addressing the
characterization problem for future deployment in autonomous vehicles.

(2) Based on the adoptedWT approach, new features were arrived at that can be used to
characterize the presence of bumps and potholes on asphalt roads. One important
note is that these features were only made extractable following the use of the
approach proposed in our work.

The rest of this paper is structured as follows: related works are presented in Section 2,
Section 3 presents the proposed methodology, while results, analysis and discussions are
presented in Section 4, while conclusion is drawn in Section 5.

2. Related works
We briefly discuss related works on road anomaly detection while highlighting the limited
consideration for solving the road anomaly characterization problem in the literature,
particularly within the scope of the author’s knowledge. In [13], an accelerometer was used to
acquire acceleration signals across different roads. A Support Vector Machine (SVM)
learning technique was used to analyze the acceleration signals to detect road anomalies and
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to determine their location. Similarly, the authors in [14] used amachine learning approach to
classify road surfaces into either smooth or rough roads using signals obtained from amobile
phone based accelerometer and a gyroscope framework. While they were able to detect road
anomalies with a relatively high precision rate, the anomaly characterization problem was
not considered. Furthermore, the learning approaches in [14,13] both require a training
process leading to an increase in the complexity of these approaches, and great dependence
on the specific type of input data being considered.

In [15], data was acquired using a gyroscope, an inertial sensor and a mobile phone to
detect road anomalies. Authors analyzed signals using the wavelet transformation technique
alongside the SVM. Specific statistics such as the absolute mean, standard deviation,
variance and the energy of the signal were used to train the SVM to classify road anomalies
into either severe, mild or span levels. Gonzalez et al. [16], in a similar approach used the
Multilayer Perceptron (MLP) algorithm to analyze road anomalies. They demonstrated a high
level of precision and detection accuracy in their experiments.

An accelerometer and a GPS based pattern recognition systemwas used for road anomaly
detection in [17]. The process included a pre-processing stage, classification using an SVM,
and visualization of the output. Results indicated better statistical performance than the other
approaches considered in [16]. In [18], a GPS, videomodule and acceleration signals were used
by an onsite real time algorithm for pothole detection. The goal was tominimize the amount of
data transmitted to a central server.

A pothole patrol system comprising of a vehicle equippedwith an accelerometer sensor for
monitoring and detecting potholes was developed for anomaly detection in [19]. The
accelerometer data captured during the drive tests were relayed via WiFi to a central
database where it was used to train an SVM for clustering the measured acceleration data.
Similarly, an approach was proposed for processing measurements obtained from a laser
profilometer in [20] towards profiling road surfaces. Results indicated that the Discrete
Wavelet Transformation (DWT) technique performed well in profiling the road surface than
the Power Spectral Density (PSD) approach.

A crowdsourcing-based pavement monitoring system was proposed in [21] for road
anomaly detection using an accelerometer, a GPS and a smartphone probe car application. A
grid-based clustering algorithm was further introduced for comprehensive information
extraction and filtering. Similarly, an investigation was conducted in a vehicle probe-based
pavement maintenance project to examine the possibility of using data from connected
vehicles for road pavement conditions monitoring [22]. Experimental results showed that
pothole anomalies were detected based on a developed sigma threshold and a wavelet
tranformation algorithm. Nevertheless, it was noted that the characterization problem was
not considered.

Essentially, other works identified in [23,24,10,25,2] considered issues pertaining to
detection, monitoring, localization, and evaluation of road anomalies, with little or no
consideration for road anomaly characterization. We suggest that the difficulty associated
with extracting distinct features from apparently indistinguishable (often noisy)
acceleration signals may well justify this limited consideration. Thus, we consider the
characterization problem in this paper.We note that effective road anomaly characterization
will improve piloting in both manned and unmanned vehicle navigation. Furthermore,
realtime knowledge of road conditions will facilitate quick maintenance response by
particular agencies.

3. Development of the proposed system
Figure 1 represents the overall design for our proposed system. A discussion of each block is
provided in the following sub-sections.
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3.1 Input stage: road surface sensing
In this section, we describe the development of our data acquisition system. The process of
road surface sensing is shown in Figure 2a. The three major tasks in this phase include the
road surface data acquisition process using an Accelerometer, the input parameter
initialization, and data display for visual inspection/analysis.

We note that NI MyRio (1950) accelerometer was programmed using LABVIEW for the
data acquisition exercise. A sampling rate of 30 Hz was set in the LABVIEW before
commencing acquisition via several drive tests. The accelerometer was mounted and
fastened to the dashboard of a Toyota Siena Space Bus 2009model, a Peugeot 406 2000model
and a Toyota Pontiac 2003 model all driven at a speed of 25 km/h. The choice of the
dashboard for placement of the device was motivated by similar adaptations identified in
[21,19,11] in which the dashboard was reported as convenient position to place the
accelerometer. It was ensured that the accelerometer was firmly fitted to prevent any form of
loose contacts and stray vibrations. Other specific details about the experimental setup used
for the data acquisition and processing can be found in [2].

We incorporated a Global Positioning System (GPS) into our design to locate road
anomalies. To do this, we programmed an Arduino microcontroller under the Arduino
Integrated Development Environment (IDE). The GPS data acquisition process is shown in
Figure 2(b). Essentially, the system initializes the GPSmodule to log the time of data capture,
and then records the corresponding longitude and latitude coordinates of the location where
datawas captured. TheGPS sampling rate was set at 1 Hzwhichwas found sufficient enough
to provide location data points during the drive test [21,19].

Figure 1.
Block diagram of the
road anomaly
detection,
characterization and
profiling system.

Figure 2.
Components of the data
acquisition stage.
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We used the standard deviation of the acceleration signal acquired over a specific period
as an approximate roughness index to describe road quality. Based on this roughness index,
we developed a Road Roughness Assessment Algorithm (RRAA) presented in Figure 2c to
determine the smoothness of the road surface. If the roughness index value is below a certain
fixed threshold value, RRAA decides that the road surface is smooth (implying that the
vehicle is on an asphalt road), and thus activates the anomaly detection and characterization
algorithm (described in the next subsections). However, if the index value is above the
threshold, the algorithm enters a stay mode (noting that the road being plied may not be an
asphalt road and thus typically defective). The program displays a “Rough Road” message
during this stay period. The road anomaly detection and characterization algorithm is only
activated when RRAA measures a roughness index below the threshold value.

3.2 Processing stage: road anomaly characterization
Our characterization algorithm employs the Wavelet Transformation (WT) theory and a
noise filtering technique to characterize road anomalies into either potholes or bumps. We
used the filtering technique in [26,27] to filter noise from acceleration signals noting that noisy
samples have lower correlation values across an increasing WT scale. This filtering
technique was adopted because it processes signals along both frequency and time scales,
which enables us to better resolve signals with hidden features. These hidden features can
then be used for both detection and characterization purposes.We present details of each sub-
system comprising the processing stage as follows:

3.2.1 Data format converter. LABVIEW software was used to program our Accelerometer.
We considered the z-axis measurement of the Accelerometer as it directly relates to the vertical
displacement of the vehicle producing different responses as the vehicle either descends into a
pothole, or ascends over a bump. The signal from theAccelerometer obtained from point “A” in
Figure 2(c) is normally outputted by the LABVIEW software in “.xml” format, which we
converted to a suitable MATLAB format (“.mat”) for further processing. MATLAB software
was used for the development of our algorithms. Basically, data is transposed from a column to
a row vector and then raised to an appropriate binary power of two, and zero padded if the data
size is less than the exponent value. The output of this conversion process is then passed to the
characterization algorithm described in subsequent subsections.

3.2.2 Wavelet transformation model. Wavelet Transformation (WT) theory was adopted
in our design. Interestingly, it is noted that while some other filtering theories may have been
used only for anomaly detection purposes, the use of theWT based filter for characterization
has remained to be investigated. Thus, in our work, it was hypothesized that by adopting the
WT theory for filtering of acceleration signals, it will be possible to examine acceleration
signals in both its frequency and timing dimensions. Our hypothesis followed the notion that
by considering the timing domain of the signal in addition to its frequency dimension, we will
be provided with a new scale for revealing unknown and hidden features of the signal. The
discreteWTmodel used is expressed in Eq. (1). First, we visually examined different function
patterns to determine a suitable and appropriate basis function, Ψj;kðxÞ to be used. The
particular functions that we considered are the Mexican Hat (Morlet), Haar, Daubechies (db),
Coiflet and the Meyer wavelet functions. The patterns of these functions were visually
compared to typical acceleration signals with an intention to choose the most similar. We
found the db2 wavelet basis function to be the best choice. Nevertheless, these functions were
analysed and their performances are reported in the result section. The discreteWTmodel we
adopted is typically expressed as

f ðxÞ ¼
XJ

j¼1

XK
k¼1

Ψj;kðxÞW ðj; kÞ (1)

New road
anomaly

detection for
vehicles

227



where Ψj;kðxÞ is the normalized dual basis function, J is the maximum number of
decomposition scales, K is the maximum position in the original signal scale, W ðj; kÞ is the
actual scale space decomposition at different resolution scales, j is the index of the scales, and
k is the index position in the original signal space. Several members of the family of Daubechy
functions were implemented according to Eq. (2) given as

Ψa;tðxÞ ¼ 1ffiffiffi
a

p Ψ
�
x� t

a

�
for a≠ 0; teR (2)

where a is the dyadic scale parameter, 1ffiffi
a

p is the resolution, and t ¼ ka is the dyadic translation

parameter. The scale variables were discretized, dilated and translated to obtain the dyadic
WT using

Ψj;kðxÞ ¼ 1ffiffiffiffi
2j

p Ψ
�
x� k

2j

�
(3)

where k is the translation index ð0; ±1; ±2; . . . Þ. We describe how these functions in (1)–(3)
were used in our approach for road anomaly characterization.

3.2.3 Wavelet transform coefficient estimator. WT coefficients, f ðxÞ, are typically
expressed as

W ðj; kÞ ¼
Z ∞

−∞

f ðxÞΨj;kðxÞdx (4)

where Ψj;kðxÞ corresponds to the function values computed in (3). By increasing the scale
factor, j, the coefficient values either remain constant or increase as the signal edges become
positively correlated. On the other hand, noise samples tend to reduce at higher scales
because they are poorly correlated. Using these properties, we easily extracted the noise
components from the portions of interests corresponding to the anomalous points in the
dataset. We describe the filtering process next based on the estimated coefficient values.

3.2.4 Scale space filter.We implemented the scale space filtering (SSF) algorithm according
to [27,28] for noise filtering. The SSF algorithm correlates the wavelet coefficients by directly
multiplying them across adjacent scales. This can be modeled as

Ωjðj; kÞ ¼
YJ−1
i¼0

W ðjþ i; kÞ (5)

where Ω denotes the spatial correlation function, J is the number of multiplication scales, and
W ðjþ i; kÞ is the ðjþ iÞthwavelet coefficients at the kth scale. Following (5), noise samples are
identified and isolated at higher scales based on their low correlation values. This process is
explained considering the first and second scale wavelet transform coefficients to beW ð1; kÞ
andW ð2; kÞ, respectively. Then, these two scales are multiplied for j ¼ 1 in (5) as follows

Ω2ð1; kÞ ¼ W ð1; kÞ:W ð2; kÞ (6)

To improve detection, we found it appropriate to use Ω2ð1; kÞ rather than eitherW ð1; kÞ or
W ð2; kÞ because it produces larger responses across increasing scales. The SSF algorithm
based on Ω2ð1; kÞ is described as follows:

1. Compute W ðj; kÞ and Ω2ðj; kÞ using (4) and (5) respectively.

2. each scale, the power of the correlated signalΩ2ðj; kÞ is rescaled to the wavelet coefficient
at that scale W ðj; kÞ.

3. An edge is identified if the absolute value of Ω2ðj; kÞ is greater than or equal to the
absolute value of W ðj; kÞ when compared at the scale ðj; kÞ.
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4. The edge position and its corresponding W ðj; kÞ values are stored.
5. All identified edges from Ω2ðj; kÞ and W ðj; kÞ are extracted. After extracting the first

round of edges at position ðj; kÞ, the samples left inΩ2ðj; kÞ andW ðj; kÞ are denoted as
Ω

0
2ðj; kÞ and W

0 ðj; kÞ.
6. The next edge in the acceleration signal is extracted fromW ðj; kÞandΩ2ðj; kÞby rescaling

the power of Ω
0
2ðj; kÞ to that of W

0 ðj; kÞ, and then comparing their absolute values.

7. Steps 2 to 6 is iterated until the power of the unextracted samples in W ðj; kÞ at the scale
points ðj; kÞ are approximately equal.

8. The final filtered signal Wnewðj; kÞ is obtained after step 7 as input to the road anomaly
detector and characterization algorithm, which we describe next.

3.2.5 Road anomaly detection algorithm. Our Road Anomaly Detection Algorithm (RADA)
monitors the signal edges in the denoised signal to detect points corresponding to road
anomalies in the signal. Transient fluctuations in the filtered signal are removed and saved as
NSD. The absolute value ofNSD is computed asNS. A counter is created to keep track of the
number of detected road anomalies in each signal window, winsig, which updates as the
algorithm moves across the length of the signal. A threshold value, Th, is set to determine
when an anomaly is detected. In eachwinsig, an anomaly is declared if the value ofWnewðj; kÞ
is greater than Th. Thus, if one or more points in NS are greater than or equal to Th, the
algorithm normalizes the number of detected anomalies within the windowed set to 1 (and
increments the anomaly count). It keeps comparing each sample within winsig toThuntil the
whole data length is processed. If no anomaly is detected, RADA outputs a ‘NO ANOMALY’
message, and reinitializes a new window to continue the detection process. The process of
anomalies detection by the proposed RADA is summarized in Algorithm 1.

Algorithm 1. Road anomaly detector.
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3.2.6 Road anomaly characterization algorithm. Our Road Anomaly Characterization
Algorithm (RACA) is summarized in Algorithm 2. RACA begins by setting the size of the
window, winsig, for processing NS (supplied by RADA). It uses winsig to create a variable,
NSD, which contains zeroes up to lengthNS. A sample index counter with its value initialized
to 1 was created. At the start, RACA initializes the number of characterized anomalies to
0 (see lines 5 of Algorithm 2). It checks each sample in winsig (in Line 6) and then sample
values less than 0with an immediate sample value greater than or equal to 0 are characterized
as bumps. Likewise, if the immediate sample value is less than 0, then RACA characterizes
the sample as pothole. The counter is incremented after processing the entire samples inNSD
and then RACA reinitiates to continue the characterization process.

Algorithm 2. Road anomaly characterization.

3.3 Road Surface Profiler
The road surface profiler system was developed to profile road surfaces using the GPS
coordinates obtained from the data acquistion stage (in Section III-A). The Profiler provides a
map of the different anomalous points existing along the road surface. It comprises of a Hyper
TextMark-up Language script (HTML)written and interfacedwith Googlemap. The outputs
from the HTML and Google map scripts are visualized using a web browser. The inputs for
the longitude and latitude coordinates of the vehicle’s location are made available via the
browser’s interface. The Profiler provides drivers with a view of the road surface condition to
enhance their driving process.

4. Results and discussion
The performance of the SSF, RADA and RACA algorithms are examined and discussed in
this section. Ultimately, the goal of the results presented in this section is to demonstrate the
capability of our algorithms to accurately detect and characterize road anomalies (with
emphasis on characterization). Furthermore, in the tabular presentation of our results, the
false alarm rate, accuracy, and the precision rate are reported for the anomaly detection
capability of the algorithm, while the characterization results are reported in terms of the
identification of either bumps or potholes.
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Figure 3.
Outputs at different

stages of the
characterization

process.
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4.1 Results of feature extraction
RACA produced unique features that we used to characterize road anomalies from noisy
acceleration signals. Several acceleration signalmeasurement campaignswere conducted across
different road terrains using different vehicles. The performance of the developed SSF, RADA
and RACA were tested on new datasets which were not used during the training process.
However, for the sake of space, we present two illustrative examples showing acceleration
signals acquired over pothole and bumpy road surfaces in Figure 3(a) and (d), respectively.
Figure 3(a) represents vehicle acceleration signals acquired over an asphalt road containing only
potholes, while Figure 3(d) represents acceleration measurements from an asphalt road having
only bumps. First, we show results from the SSF algorithm revealing the correlated wavelet
coefficient outputs in Figure 3(b) and (e) for the pothole and bump road surfaces, respectively.
We see that these coefficients represent a finer version of the noisy measurements shown in
Figure 3(a) and (d), respectively. These were further processed by the SSF algorithm and
denoised to produce the final outputs shown in Figure 3(c) and (f), for the pothole and bump road
surfaces, respectively. These outputs provide two unique features shown in Figure 4(a) and (b)
for characterizing potholes and bumps, respectively. The basis for these features can be
explained as follows: a vehicle typically descends into a pothole before ascending out of it, while
ascending over a bump before descending down the bump. These different movement patterns
are reflected in the acceleration signal which RACA clearly detects by leveraging on the SSF
algorithm. RACAuses these features (see Figure 4(a) and (b)) to characterize road anomalies and
its performance across different measurements is presented in the next subsections.

Figure 4.
Features representing
road anomalies.

Figure 5.
Confusion matrix.
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Essentially, for an already labeled dataset, if an anomaly exists (which we refer to as a
positive (P)), and our algorithm successfully detects and characterizes this anomaly to be
either a pothole or a bump (RD), then a True Positive (TP) is declared. However, if detected to
be a non-anomaly (NRD), then a false negative (FN) is declared. Alternatively, if the labeled
sample is a non-anomaly (N), and our algorithm detects and characterizes such a sample to be
non-anomaly (NRD), then a True Negative (TN) is declared, otherwise, a False Positive (FP) is
declared. The equations describing these metrics are as follows:

Accuracy ¼ TP þ TN

P þ N
(7)

Precision ¼ TP

TP þ FP
(8)

FPR ¼ FP

N
(9)

4.2 Performance analysis
The performances of RADA and RACA were analysed using the following metrics:
Accuracy, Precision, and False positive rate (FPR) [29–31]. We describe how these metrics
were computed relative to the type of measurements considered in this paper. We considered
the confusion matrix shown in Figure 5.

We examined the effect of setting an appropriate detection threshold for the algorithm.
The results obtained over different threshold values are provided in Tables 1 and 2. The

Type of Data: Potholes
Overall Performance Analysis

Threshold Acc Prec FPR Det. B PH
0.0000 0.9133 0.4878 0.0585 13 1 12
0.0010 0.9413 0.6667 0.0279 9 1 8
0.0020 0.9439 0.6897 0.0251 8 0 8
0.0030 0.9439 0.6897 0.0251 7 1 6
0.0040 0.9541 0.8947 0.0056 5 1 4
0.0050 0.9413 0.9167 0.0028 4 1 3
0.0060 0.9413 0.9167 0.0028 3 0 3
0.0070 0.9413 0.9167 0.0028 3 0 3
0.0080 0.9413 0.9167 0.0028 3 0 3
0.0090 0.9413 0.9167 0.0028 3 0 3
0.0100 0.9413 0.9167 0.0028 3 0 3
0.0110 0.9413 0.9167 0.0028 3 0 3
0.0120 0.9413 0.9167 0.0028 3 0 3
0.0130 0.9439 1.0000 0.0000 2 0 2
0.0140 0.9439 1.0000 0.0000 2 0 2
0.0150 0.9439 1.0000 0.0000 2 0 2
0.0160 0.9439 1.0000 0.0000 2 0 2
0.0170 0.9337 1.0000 0.0000 2 0 2
0.0180 0.9337 1.0000 0.0000 2 0 2
0.0190 0.9337 1.0000 0.0000 2 0 2

LEGEND: Acc 5 Accuracy, Prec 5 Precision.
FPR 5 False Positive Rate.
Det 5 Number of Detected Anomalies.
B 5 Number of Characterized bumps.
PH 5 Number of characterized Potholes.

Table 1.
Performance analysis

for potholes.
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Type of Data: Bump
Overall Algorithm’s Performance Analysis

Threshold Acc Prec FPR Det. B PH
0.0000 0.9286 0.4375 0.0570 11 1 10
0.0010 0.9405 0.5000 0.0380 7 0 7
0.0020 0.9405 0.5000 0.0380 5 0 5
0.0030 0.9583 0.6875 0.0158 4 1 3
0.0040 0.9583 0.6875 0.0158 3 2 1
0.0050 0.9583 0.6875 0.0158 3 2 1
0.0060 0.9583 0.6875 0.0158 3 2 1
0.0070 0.9554 0.6667 0.0158 3 2 1
0.0080 0.9554 0.6667 0.0158 3 2 1
0.0090 0.9554 0.6667 0.0158 3 3 0
0.0100 0.9643 0.8333 0.0063 3 3 0
0.0110 0.9643 0.8333 0.0063 3 3 0
0.0120 0.9643 0.8333 0.0063 3 3 0
0.0130 0.9643 0.8333 0.0063 3 3 0
0.0140 0.9673 1.0000 0.0000 3 3 0
0.0150 0.9673 1.0000 0.0000 3 3 0
0.0160 0.9673 1.0000 0.0000 3 3 0
0.0170 0.9673 1.0000 0.0000 3 3 0
0.0180 0.9673 1.0000 0.0000 3 2 0
0.0190 0.9673 1.0000 0.0000 3 2 0

LEGEND: Acc 5 Accuracy, Prec 5 Precision.
FPR 5 False Positive Rate.
Det 5 Number of Detected Anomalies.
B 5 Number of Characterized bumps.
PH 5 Number of characterized Potholes.

Acc Prec FPR Def. B PH Wname

0.9413 0.9167 0.0028 3 0 3 db2
0.9286 0.8571 0.0028 2 1 1 db3
0.9311 1.0000 0.0000 3 2 1 db4
0.9260 0.7500 0.0056 4 1 3 db5
0.9158 0.5000 0.0084 3 1 2 db6
0.9056 0.0000 0.0111 3 0 3 db7
0.9031 0.2222 0.0195 3 0 3 db8
0.8827 0.0667 0.0390 3 0 3 db9
0.8801 0.0000 0.0390 3 0 3 db10
0.8954 0.1667 0.0279 3 2 1 db11
0.8878 0.0769 0.0334 3 1 2 db12
0.8801 0.0000 0.0390 3 2 1 db13
0.8903 0.0000 0.0279 3 2 1 db14
0.8801 0.1111 0.0446 3 0 3 db15
0.8750 0.0556 0.0474 3 0 3 db16
0.8571 0.0000 0.0641 3 0 3 db17
0.8827 0.0000 0.0362 3 0 3 db18
0.8673 0.0000 0.0529 3 0 3 db19

Table 2.
Average performance
analysis for bumps.

Table 3.
Effect of using
different Daubechy
functions, for
threshold 5 0.01.
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algorithm’s detection threshold was increased iteratively from 0.000 (minimum threshold) to
0.019 incrementally by 0.001. An appropriate threshold was identified at the point where no
change occured across the different performancemetrics. This occured at a threshold value of
0.006 for potholes (see Table 1) leading to an accuracy of 94%, a precision of 92%, and a 0.3%
false positive rate. For bumps, it occured at a threshold value of 0.01 leading to an accuracy of
96%, a precision of 83%, and a very low false positive rate of 0.6% (see Table 2). Thus, in the
absence of an adaptive mechanism, a single threshold value was chosen at 0.01, which tends
to produce the best performance for both pothole and bump features (see Tables 1 and 2). This
value was maintained for the rest of the analyses reported in this paper.

4.3 Choice of algorithm’s parameter values
We examined the performance of our algorithm over a wide range of different parameter
values. The results obtained are presented in the following subsections.

4.3.1 Choice of mother wavelet function. We mentioned in Section III-B-2 that different
wavelet functions were examined, and the results from these analyses are presented. The
different wavelet functions considered are denoted under the variable ‘Wname’ and the
performance results for the family of Daubechy functions is provided in Table 3. A

Acc Prec FPR Def. B PH Wname

0.9413 0.9167 0.0028 3 0 3 Sym2
0.9286 0.8571 0.0028 2 1 1 Sym3
0.9388 1.0000 0.0000 2 1 1 Sym4
0.9464 1.0000 0.0000 3 1 2 Sym5
0.9388 1.0000 0.0000 2 1 1 Sym6
0.9286 0.7778 0.0056 3 1 2 Sym7
0.9388 1.0000 0.0000 2 1 1 Sym8
0.9464 1.0000 0.0000 3 1 2 Sym9
0.9388 1.0000 0.0000 2 0 2 Sym10

Acc Prec FPR Def. B PH Wname

0.9388 1.0000 0.0000 2 1 1 Coif1
0.9362 0.7857 0.0084 3 0 3 Coif2
0.9260 0.6429 0.0139 3 0 3 Coif3
0.9133 0.4667 0.0223 3 0 3 Coif4
0.9082 0.3846 0.0223 3 0 3 Coif5

Acc Prec FPR Def B PH Level

0.9413 0.9167 0.0028 3 0 3 2
0.9413 0.9167 0.0028 4 0 3 3
0.9056 0.7500 0.0056 5 0 5 4
0.9107 1.0000 0.0000 5 0 5 5

Table 5.
Effect of different

Symlet mother
wavelets using

threshold 5 0.01.

Table 4.
Effect of different

Coiflet mother
wavelets using

threshold 5 0.01.

Table 6.
Effect of different

decomposition levels
using db2 and

threshold 5 0.01.
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combination of the measurements for both potholes and bumps was used. Furthermore, the
optimal threshold value of 0.01 (see Section B above) was used.We observed (see Table 3) that
accuracy and precision decreased for higher members of the Daubechy family (db2 to db19),
while false alarm increased. Thus, lower members of the family of Daubechy functions
performed better than higher members. The db2 mother wavelet function was selected to be
the best choice for the SSF algorithm leading to an average accuracy of 94%, precision of
92%, and a false alarm rate of 0.3% respectively.

Other wavelet functions were examined such as the Coiflet (Coif) and Symlet (Sym)
functions and results obtained are presented in Table 4 and 5, respectively. We observed

Acc Prec FPR Def. B PH Window

0.9337 0.8889 0.0028 4 2 2 5
0.9388 0.9091 0.0028 3 0 3 10
0.9388 0.9091 0.0028 3 0 3 20
0.9413 0.9167 0.0028 3 0 3 30
0.9388 0.9091 0.0028 3 0 3 40
0.9413 0.9167 0.0028 3 0 3 50

Road Anomalies Longitude Latitude

Pothole 1 6.449853 9.534304
Pothole 2 6.449581 9.534817
Pothole 3 6.448710 9.536412
Bump 1 6.464269 9.536809
Bump 2 6.464707 9.536852
Bump 3 6.465189 9.536881

Table 7.
Effect of different
window Sizes for
Wname 5 db2, and
threshold 5 0.01.

Figure 6.
Profiled road.

Table 8.
Corresponding GPS
coordinates of road
anomalies location.
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that the Coiflet function produced high precision and low false alarm rates at the expense
of poor characterization performances (see the B and PH values in Table 4). For higher
members of the Coiflet wavelet family, our SSF algorithm was able to detect and
characterize appropriately with low accuracy and precision rates (see Table 4) as
compared to the db2 function in Table 3. Moreover, observe in Table 5 that the Sym2
wavelet function produced the same accuracy, precision, and false alarm rate with the db2
function in Table 3. This implies that either of these two mother wavelets can be used to
achieve good performance. The db2 function was chosen for use in our SSF algorithm.
Other wavelet functions such as the Mexican Hat (Morlet), Meyer and Shannon functions
were not considered because of their dissimilar pattern to the acceleration signals
considered in this work.

4.3.2 Performance under varying decomposition levels.We studied the effect of the number
of decomposition levels on the performance of RACA. Different WT decomposition levels in
the SSF algorithmwere examined and results obtained are provided in Table 6. We observed
(see Table 6) that at higher decomposition levels (specifically above 3), RACA performed
poorly. One reason we may suggest is that at higher levels, the higher frequency components
of the signal are filtered out leading to the loss of important signal features. Consequently, two
decomposition levels were considered in the SSF algorithm to improve RACA’s performance.

4.3.3 Performance under varying window size. The window size in RACA aggregates a
number of samples within which an anomaly can be detected. Thus, RACA’s performance
was examined with regards to different window sizes. The db2 wavelet function was used
(being the best choice) and a window size ranging from 10 and 50 samples produced an
appreciable performance level (see Table 7). However, the algorithm performed poorly with
window sizes below 5 samples. Therefore, a window size of 30 samples was considered
suitable for RACA to guarantee high accuracy, precision and lower FPR values. In addition,
higher values may only increase the required memory size, and not necessarily improve the
algorithm’s performance.

4.3.4 The road profiler output. We provide a visual feel of the output of the profiler
showing both potholes and bumps in Figure 6(a) and (b), respectively. Thiswas done for a few
sampled anomalies having their respective GPS coordinates stated in Table 8. The red1

marks in Figure 6(a) serve to indicate the different locations of the detected and characterized
anomalies. These maps in Figure 6(a) and (b) aim to demonstrate the concept and
functionality of the road profiler system. Nevertheless, further development in this regard is
required. The profiler’s output can be used by drivers to identify defective portions along the
road surface towards improving the driving process.

5. Conclusion
This paper has presented algorithms for the detection and characterization of road anomalies
for possible deployment in both manned and unmanned vehicles. Our algorithm works by
filtering noisy measurements obtained via an Accelerometer mounted in a vehicle. The
positive correlation property across different scales in the WT domain is employed to detect
anomalous points in the acceleration signal. Two unique features were developed to
distinguish potholes from bumps. Results obtained suggest that these features can be
successfully used to characterize road anomalies with a high level of accuracy, precision and
a low false positive rate. Future works will focus on developing adaptive mechanisms to vary
the threshold value of the algorithm based on different measurement sets rather than on a
static threshold value considered at this point of our research. In addition, mechanisms for
communicating the characterized road anomaly information among vehicles or between a
vehicle and a road side infrastructure in typical VANET systems will be examined. At the
moment, it is noted that WT processors may be unavailable as off-the-shelve chipsets, thus
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making the practical development of our approach an interesting issue for future research
consideration. Our current research contributes towards improving road anomaly
characterization for future deployment in autonomous vehicles.

Notes
1 For interpretation of color in Figure 6, the reader is referred to the web version of this article.
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