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Abstract
Embedded systems, Internet of Things (IoT) andmobile computing devices are used in various domains which
include public-private infrastructure, industrial installation and critical environment. Generally, information
handled by these devices is private and critical. Therefore, it must be appropriately secured from different
attacks and hackers. Lightweight cryptography is an aspiring field which investigates the implementation of
cryptographic primitives and algorithms for resource constrained devices. In this paper, a new compact hybrid
lightweight encryption technique has been proposed. Proposed technique uses the fastest bit permutation
instruction PERMS with S-box of PRESENT block cipher for non-linearity. An arbitrary n-bit permutation is
performed using PERMS instruction in less than log (n) number of instructions. This new hybrid system has
been analyzed for software performance on Advanced RISC Machine (ARM) and Intel processor whereas
Cadens tool is used to analyze the hardware performance. The result of the proposed technique is improved by
the factor of eight as compared to the PRESENT-GRP hybrid block cipher. Moreover, PERMS instruction bit
permutation properties result a very good avalanche effect and compact implementation in the both hardware
and software environment.
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1. Introduction
The increasing use of mobile computing devices in the field of Information and
Communication Technology (ICT) has raised concerns about security. Lightweight
cryptography has made more overdrive from various cipher proposals such as PRESENT
[15], CLEFIA [16], KATAN [19], HEIGHT [18], SIMON/SPECK [20], Fantomas [21], KLEIN
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[22] and many other ciphers. Lightweight cryptography aims to offer sufficient security
level with an optimum use of resources [11–14]. The optimum use of resources includes
area, battery, CPU, memory and power. Among these, power consumption is one of the
crucial factors on which lightweight ciphers need to work. Power consumption is strongly
dependent on Gate Equivalents (GEs) and CPU cycles. GE is focused by hardware
implementation and CPU cycles are focused by software implementation of a lightweight
cipher. However, security properties should not be compromised for GEs and CPU cycles.
For radio-frequency identification (RFID) tags, GEs are normally 1000–10000 but only
300–2100 GEs allotted for security purpose [23]. In lightweight cryptography, researchers
adopts different approaches to develop an lightweight cipher such as modifying existing
cipher, optimizing existing cipher or developing an entire new cipher. The third approach was
explored in 2007 [15] where an entirely new cipher was designed, and it is known as the
PRESENT block cipher. PRESENT block cipher is remain inspiration for many lightweight
cryptography researchers, who have added their efforts to make it more better, which is
discussed in Section 3. There are many ciphers where entirely new ciphers have been designed
such as TEA [27], LED, ZORRO [29], Hummingbird [30], KATAN and KTANTAN [19], Halka
[31], TWINE [32], RECTANGLE [28], GOST [33], PRINT [34], PUFFIN [35], Fantomas [36],
Midori [37], Twofish [39] and mCrypton [38]. Block ciphers that have used permutation are
summarized in Table 1. below.

Based on the algorithm structure, block ciphers are classified into Substitution Permutation
Network (SPN), Feistel network and stream and Lai- Massey.

We introduce a new hybrid lightweight block cipher which supports portable and secure
software aswell as hardware implementation of PRESENTblock cipher. A permutation layer
of PRESENT block cipher is modified and implemented with PERMS bit permutation
instruction to improve the performance. A detailed study is carried out with the help of
properties and security aspects for the bit permutation instructions like SWPERM [5], GRP
[4], PERMS [1] and OMFLIP [7,9] in the next section. As compared to other bit permutation
instructions, PERMS provides an efficient bit permutation instruction in terms of
cryptographic properties, CPU cycles and total number of gate counts. PERMS instruction
is complex in a nature that makes it more suitable for cryptographic environment. PERMS
instruction is most appropriate for cryptographic functions such as encryption and hash
techniques, especially applications where continuous encryption-decryption operations are
required to be performed. Linear and differential cryptanalysis properties of PERMS
instructions are elaborated in the Section 6.

The main aim of this paper is to present the results of a compact hybrid cipher with ample
security for resource constrained devices. The proposed block cipher is implemented and
tested on the ARM and Intel processors. The experimentations are carried out on ARM
processor Cortex-M and more powerful Cortex-A series processors. The performance
parameters of the proposed cipher are compared with other existing ciphers such as

Name of the block cipher Input block size Key size No. of rounds Algorithm Design Pattern

HIGHT 64 128 32 GFN
Pickolo 64 80/128 25/31 GFN
PRESENT 64 80/128 31 SPN
DESLX 64 184 16 Feistel
Midori 64/128 128 16/20 SPN
mCrypton 64 64/96/128 12 SPN
AES 128 128/192/256 10/12/14 SPN
Clefia 128 128/192/256 18/22/26 GFN

Table 1.
Comparison of
lightweight block
ciphers used in bit
permutation.
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PRESENT, CLEFIA and PRESENT-GRP [2]. We have obtained better results which are
shown in Section 5.

2. Bit permutations
Let B is any arbitrary bit string of length n and (Bn�1, Bn�2� � �B1, B0) 2
where,

Bef0; 1g
Let P is a sequence of the form (Pn�1, Pn�2,� � �P2, P1, P0) comprising random permutation
from 0 to n � 1.

The permutation of B with P is given by (bpn�1, bpn�2,� � �bp2, bp1, bp0)2.
Many existing Instruction Set Architectures (ISA) provide limited support for performing

such arbitrary bit permutations compared to the regular permutation. There are different
alternative ways to perform bit permutation as discussed below:

2.1 Logical operations
In this operation, different logical operations are used to perform the final bit permutation.
The use of each logical operation used to perform bit permutation is given as follows:

1. AND operation: To extract the required bits from n bits which have to be selected by a
mask.

2. Shift operation: To shift bits to their new position.

3. OR operation: To combine with previously permuted bits.

This technique requires many operations that lead to the increase in the number of
instructions and memory required [3].

2.2 Lookups Table
In this method, the input bit stream is partitioned intomultiple sections. Then, the bits in each
section are permuted simultaneously with the help of lookup table. Finally, the result of each
section is combined to produce the final results of permutations. The required instruction
count solely depends on the number of sections formed. Less number of sections needs a few
instructions but it increases memory requirement.

Apart from these two basic methods, bit permutation can be accelerated with the help of
certain instructions like BFLY-IBFLY [6], PPERM-PPERM3R, CROSS, GRP, OMFLIP and
SWPERM-SIEVE. All these instructions are compared in Table 2 against various parameters
such as the number of instructions required, memory requirement, CPU cycles, Time
complexity and mapping. Among these instructions, GRP instruction is used [2] to build a
hybrid lightweight encryption. But after detailed study, we found another better instruction
that is PERMS instruction. GRP performs 128-bit arbitrary permutation using 64-bit
instructions set in 16 instructions. Among these 16 instructions, two are Shift Right Pair
(SHRP) instructions which are available only in IA-64 and PA-RISC processors. However,
other processors do not have SHRP instruction in their instruction set, thus on other
processors GRP needs 4 instructions to perform the same operation. Therefore, GRP utilize
total 22 instructions on other processors whereas PERMS instruction requires only 18
instructions to perform 128-bit permutation using 64 bit instructions on any processor.
Permutation with repetitions is referred to as ‘Mappings’. In this a bit in the input bits can be
replicated and can appear at multiple locations in the output. Currently, none of the GRP,
CROSS andOMFLIP permutation instructions supportsmappings. Only PPERMand PERMS
instructions support Mappings. Therefore, it motivates to use PERMS for lightweight
cryptography. Table 2 shows a detailed comparison of different bit permutation instructions.
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3. Lightweight cryptography
Many devices have started to become pervasive computing devices which have in built
embedded computing power. There is a huge adoption of IoT devices which leads the
importance of lightweight cryptography. Lightweight cryptography has become an active
research area for researchers since last two decades. For hardware oriented lightweight
cryptography techniques performance parameters are area, GEs and power consumption.
However, software based cryptography techniques tackles the memory usage, CPU usage
and energy constraints. Standard algorithms like AES [24], DES [25], T-DES [26] and SHA-1
have proven their security very well and thus they are used extensively in many standalone
pervasive computing as well as mobile devices. However, standard algorithms consumes
system resources such as memory or CPU cycles at a very high level which makes them
unsuitable for resource constrained devices. Hence, it leads to thrust for a lightweight cipher.
In the last two decades, many researchers have come up with their lightweight ciphers,
against which different attacks have been proven [11]. PRESENT and CLEFIA are two
algorithms which are accepted as International Organization for Standardization (ISO)
lightweight cryptography standards ISO/IEC (29192-2P:2012). CLEFIA was developed by
Sony in 2007 and it targeted to be used in Digital rightmanagements. PRESENT is developed
by the Orange Labs (France), Ruhr University Bochum (Germany) and the Technical
University of Denmark in 2007. It is best known for its compact size. PRESENT cipher is used
as a benchmark by many researchers.

Various modifications have been carried out to improve hardware as well as software
implementation results of a PRESENT cipher. Author Poshmann has implemented
PRESENT cipher on different processors ranging from 4-bit to 64-bit [44]. PRESENT-GRP
[2] is a hybrid design that has replaced the permutation layer of the original PRESENT cipher
by GRP. PRESENT cipher and other twelve block ciphers are implemented and optimized on
three different platforms such as 8-bit ATmega, 16-bit MSP430 and 32-bit ARMCortex-M3
[13]. Benadjila et al. provide PRESENT and many other block ciphers implementation to
speed up through table based, vector instruction and bit sliced implementations on Intel x86
architectures [45]. It has been concluded that, the bit sliced implementations might not be
useful when the amount of data to be enciphered at a time is small. The compatibility between
the server and the client is one of the issue arises in bit sliced implementation.

PPERM3R
PPERM

OMFLIP/
CROSS GRP PERMS

SWPERM
SIEVE

Maximumnumber of instructions for
64 bit word size permutation

8 6 6 4 11

Mappings Efficient N/A N/A Efficient N/A
Maximumnumber of instructions for
128 bit permutation using 64 bit
Instruction

34 24 16*/22** 18 39

Speed Medium Fast Fast Fast Medium
Scalability to 2n bits Inefficient Less

efficient
Efficient Efficient Inefficient

Time Complexity for 64 bit word size
permutation

O(log (n)) log(n) log(n) < log(n) O(log (n))

Minimum operands required 4 5 3 3 3
Memory requirement (bytes) 64 48 48 32 48
Transistor Count [4] 7 k 3 k 68 k 2.7 k 7.4 k
* On PA-RISC [10] and IA-64 [8] processor only.
** Other Processors.

Table 2.
Comparison of bit
permutation
instructions.
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There is another work presented by Tiago et al. [46], where bit sliced implementation and
masking technique is used to prevent side channel attacks. In bit sliced implementation,
constant time implementation can be achieved that helps to protect against timing attacks.
They have modified PRESENT cipher in two ways; first permutation P is decomposed in P0
and P1 in alternative rounds and second S-box is implemented through bit-sliced
implementation. However, permutation P is applied to some of the round keys and they
have restricted their implementation to key size of 80 only.

The prime objective of this research work is to improve the PRESENT cipher hardware
based performance. Although our aim is to improve hardware implementation by reducing
the GE, we have also achieved satisfactory results for software based implementation. The
proposed cipher PRESENT-PERMS is not having any specific processor restriction like GRP
instruction or bit sliced implementation. Bit sliced or vector instruction based implementation
is supported by only certain higher end processors.

As mentioned in Table 1 many lightweight ciphers uses permutation as their linear layer.
Among these PRESENT and CLEFIA are selected to discuss and implement because they are
the ISO/IEC standards and both algorithms have deeply been tested against various attacks
earlier. PRESENT and CLEFIA lightweight ciphers have proved strong resistance against
linear and differential cryptanalysis [15–17]. PRESENT cipher can be optimizedwith PERMS
permutation instruction in software environment. The detailed implementation and analysis
of proposed cipher is presented in the next section.

4. Proposed hybrid cipher implementation
The proposed lightweight hybrid cipher (PRESENT-PERMS) block diagram is as shown in
Figure 1. A detailed study of bit permutation instructions is carried out and it has been found
that PERMS instruction has a greater impact on other instructions. PERMS instruction is
superior to GRP instruction in terms of CPU cycles. Different ciphers such as PRESENT,
CLEFIA, PRESENT-GRP and proposed hybrid (PRESENT-PERMS) cipher are implemented
and tested on 32-bit ARM processor in ‘C’ language. S-box of PRESENT cipher has a good
number of active S-boxes and maximal bias for the linear approximation which makes it
resistant against linear and differential cryptanalysis.

Plain Text
Key Register

Substitution Layer Update

XOR

Add round key

# 31 Times

PERMS_Permutation 

Layer

XOR

Cipher Text

Update

Add round key

Figure 1.
Proposed block

diagram of hybrid
(PRESENT-PERMS)

cipher.
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4.1 Implementation of PERMS instruction
In PERMS instruction, two different algorithms are used to calculate control bits and to
perform arbitrary permutation. ‘C’ language code to calculate control bits is presented below:

4.1.1 ‘C’ language code to generate control bits.

Array input1[ ] and input2[ ] are used as an input array and array control_bits [ ] is used to
hold control bits. Array input1 [ ] holdsmonotonically increasing sequence of integers of a size
n and array input2[ ] is a given permutation array.

4.1.2 ‘C’ language code to perform arbitrary permutation. To perform arbitrary
permutation, control bits array control_bits [ ] and sorted array pp[ ] are used as an inputs.
Following given ‘C’ code generates final permutation array as an output:

It is clear from the above algorithm that PERMS instruction requires only four instructions
whereas GRP requires six instructions. The CPU cycles count for both instruction
implemented in ‘C’ language is given in Table 3.
Table 4 shows different parameters used for the implementation of the PRESENT-PERMS
hybrid cipher for 64 and 128 bits. The different parameters such as block size, key size and
number of rounds are considered for implementations.

GRP PERMS

No. of CPU cycles to perform 64bit permutation with control bits 245 180

Table 3.
CPU cycle count for
GRP and PERMS.
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5. Experimentations and result analysis
5.1 Hardware based evaluation
All the cipher design considered for the benchmarkingwere implemented in Verilog code and
the functional verification was carried out using Cadens CDS Encounter v11.10 – p003_1 (64
bit) simulation software. The designs were synthesized using the RTL Compiler for the
Standard Cell library of the STM 90 nm Logic Process. Cadens calculates GEmore accurately
than other approaches used in previous work. The performance parameters used to compare
the proposed hybrid cipher and other block ciphers are CPU cycles, GE and power
consumption. The other ciphers such AES, PRESENT64, PRESENT128, PRESENR-GRP64,
PRESENR-GRP128 and the proposed cipher PRESENT-PERMS are implemented on the
same hardware and software platform to have a fair comparison. There are different
PRESENT implementations optimized either for latency, area or throughput. Benchmarking
results are obtained from the area optimized implementations. FromTable 5, it can be noticed
that PRESENT-PERMS require lowest GEs and energy per bit for encryption operation as
compared to other ciphers. Many devices or applications more often use only encryption than
encryption-decryption. For encryption-decryption operations PRESENT-PERMS GEs are
less than CLEFIA, AES and PRESENT-GRP. Comparative results of the proposed hybrid
cipher PRESENT-PERMS and other ciphers are shown in Table 6.

5.2 Software based evaluation
Permutation is a main building block for SPN based ciphers. Figure 2 shows a comparison of
different permutations. It is observed that PERMS takes the least number of CPU cycles for 128-
bit permutation. PERMS, OMFLIP and GRP are themselves acting as P-Boxes (Permutation-
Boxes). The experimentations are carried with 128-bit input to compare permutation

Cipher Name Block Size/Key Size Operation GE Energy (pJ) Energy/bit (pJ)

AES 128/128 Enc þ Dec 24,234 816 6.4
Enc 14,895 462.7 3.6

PRESENT 64/80 Enc þ Dec 2286 274.2 4.3
Enc 1518 169.3 2.6

CLEFIA 128/128 Enc þ Dec 2838 595.7 4.7
Enc 1928 352.3 2.8

PRESENT-GRP 64/128 Enc þ Dec 2425 315.1 4.9
Enc 1496 180.5 2.8

PRESENT-PERMS 64/80 Enc þ Dec 2368 278.8 4.4
Enc 1406 162.2 2.5

Operation Type A Type B Type C

PERMS For any s, t p 5 1/n E(jΔj) 5 n/4 E(jΔj) 5 n/4

Cipher Block size Key size Number of rounds

PRESENT-PERMS_64 64 128 31
PRESENT-PERMS_128 128 128 31

Table 5.
Comparative results of
the proposed hybrid

cipher and other
ciphers for the
STM 90 nm.

Table 6.
Differential properties

of PERMS.

Table 4.
Parameters of

PRESENT-PERMS 64
bit and 128 bit

Implementations.
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algorithms. Software implementation is carried out on ARM cortex M3, ARM cortex-A15 and
Intel i5 processor. CPU cycles are measured on ARM processor by accessing performance
monitor control register. For compilation GCC compiler is used with O3 optimization level.

CPU cycles needed by the encryption operation and encryption-decryption both the
operations are calculated. The CPU cycles required for the PRESENT-PERMS and other
ciphers are as shown in Figure 3. PRESENT-PERMS needs the lowest CPU cycles for both
encryption as well as encryption-decryption operations. For all the cipher algorithms CPU
cycles count, lowest CPU cycle count is considered for the final resultant parameter. From
Figure 2 it can be noticed that PRESENT-PERMS requires least CPU cycles whereas CLEFIA
needs the highest CPU cycles.

6. Security analysis
Cryptanalysis for any lightweightblock cipher is avital step tobeperformed.Cryptanalysis helpsus
to know the relationship among the plain text, key and cipher text. It also aims to find some details
aboutkeyor cipher textorboth.Themostpopular attacksonblockciphersaredifferential and linear
cryptanalysis. They have been described respectively in [40] and [41] deeply. Since their inception, a
significant research has been carried out to show their relationship and to better solutions to thwart
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Figure 2.
P-box comparison.
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them [42]. Matsui’s branch and bound search algorithm [23] is one of the most powerful and classic
methods for obtaining a security bound with respect to differential and linear attack.

In differential cryptanalysis two plain texts are selected (x1 and x2) with some difference as
ΔD. Further, it ismeasured byXORoperation and these two plain texts are converted into cipher
texts, where difference between these two cipher texts is denoted as ΔC. The pair ðΔD; ΔCÞ is
referred as differential characteristics. The ΔC is expected to be a larger value as compared to
average probability. This section analyzes the bit permutation instruction PERMS’s differential
and linear cryptanalysis. Any permutation operation can described as R5 P Opr Q, where,

Opr is bit permutation operation that is PERMS operation,
P is the bits to be permuted according to the Q,
R is the output of a bit permutation operation.
For bit permutation there are three forms of differential characteristics most useful [43]:

Type A: ðes; 0Þ→ et

Type B: ð0; etÞ→Δ

Type C: ðes; etÞ→Δ

A differential characteristic of the bit permutation operation PERMS is described with a
triplet ðΔp; ΔQÞ→ΔRwith the probability p in which triplet holds true when the inputs are
selected at arbitrary. In differential characteristics es specifies the n-bit word that has all bits
zero excluding for a single one bit which is at position s. TypeA specifies about how single bit
at position s is shifted, when Q15 Q2 are randomly selected. Probability p decides how likely
bit at position s in P is shifted to bit t in R. For Type B and C, diffusion effect is compared by
calculating the Hamming weight of ΔR. A bigger hamming weight results in an avalanche
effect. Table 7 shows differential characteristic of PERMS.

EðjΔjÞdenotes the expected value of a variation while input sequence is random. From the
Table 7, it is cleared that PERMS achieves required avalanche effect.

A linear approximation of the permutation R 5 P Opr Q is a triplet (£p, £q, £r)
where,
£ is a binary vector and length £ and P is equal.
Probability Pr holds on arbitrary inputs and described as:

£1⊕P £q.Q 5 £r.R

The linear approximation bias is jpr− 1=2j. Linear approximations are two types which are
used to compare PERMS instruction as follows:

Type D: (es, 0, et)

Type E: (es, eu, et)

Type D approximations do not include any bits in Q. Thus, it measures how uniformly the
permutation moves the bits around. Type E approximations include some bits of Q. It
measures how control bit qu determines the path of ps to rt. The biases of Type D and Type E
characteristics for PERM instruction are mentioned in Table 7, in which b indicates bias.

In PERMS based bit permutation, input bit can move to any random position with equal
probability 1/n. The bias is 1/ (2n) for all s and t. PRESENT cipher has achieved a very good

Operation Type D Type E

PERMS b ≤ 1/(2n)
Maximum with s 5 t 5 0

b ≤ 1/(2n)
Maximum with s 5 u 5 t 5 0

Table 7.
Linear properties of
PERM permutation.
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security through its compact 4-bit S-boxes. The S-boxes used in PRESENT can be
implemented with less GE and power consumption [15]. Novel properties of PRESENT S-
boxes succeed to have an expected avalanche effect and enough number of active S-boxes.
PRESENT cipher has strong linear and differential characteristics to stand against linear and
differential cryptanalysis attack. PRESENT cipher is strongly defended against other
attacks such as algebraic attack, structural attack and key schedule attacks [15].

7. Conclusions
PERMS bit permutation instruction performs arbitrary permutations in less than log (n)
steps, compared to the all other bit permutation instructions. PERMS takes a less number of
CPU cycles and GE which makes it faster and area efficient compared to GRP. Along with
speed PERMS also provides a good security properties which makes it a good candidate for
lightweight cryptography. However, for any block cipher there is a need of linear and non-
linear layers. Therefore, PRESENT cipher has been selected for hybrid design that is an ISO
standard and proven cipher. In this hybrid crypto cipher, PERMS is used for a permutation
layer and PRESENT S-box is used as a non-linear layer. PERMS instruction not only has
good differential and linear cryptanalysis properties but also it is capable to prevent brute-
force attack. Furthermore software performance is evaluated on popular ARM and Intel
processors. CPU cycles for PRESENT-PERMS implementation results in very less compared
to other standard lightweight algorithms. To test proposed cipher for hardware performance,
area and energy measurement is carried out on Cadens tool. The proposed cipher is tested for
vector implementation on both ARM and Intel processors to speed up the S-box
implementation which also provides timing attack protection. This hybrid block cipher
proves to be very useful for lightweight cryptography community.
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