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Abstract
This paper reports a new technique for achieving optimized design for power system stabilizers. In any large
scale interconnected systems, disturbances of small magnitudes are very common and low frequency
oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system
stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for
damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input.
In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision
making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for
the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes
over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived.
Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential
Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established
the robustness of the algorithm in designing PSS under different operating conditions.
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1. Introduction
Power system is a highly complex and non-linear system and it has always suffered from low
frequency oscillations ranging from 0.2 to 2 Hz [1]. These troublesome dynamic oscillations
arise due to various disturbances like load variations, line outages and also some other factors
like characteristics of various control devices and electrical connections between the
components. Due to these low frequency oscillations power-transfer capability of power
systems get reduced. Moreover they are associated to the rotor angle of the synchronous
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machines which continues to grow causing loss of synchronism if adequate damping is not
provided to the system. So power system stabilizers aremost commonly used to damp out the
system oscillations and also to enhance the damping of electromechanical modes. These
oscillations can be divided into two main important categories: firstly the local mode of
oscillations, ranging from 0.8 to 2 Hz and inter area mode of oscillations ranging from 0.2 to
0.8 Hz. These phenomena can be examined by eigenvalue analysis and can be solved with the
help of power system stabilizer. Suitably tuned parameters of PSS introduce a component of
electrical torquewhich is in phasewith the generator rotor angle deviations and can damp out
low frequency oscillations. Inputs to the stabilizer can be rotor frequency, rotor speed
deviation and accelerating power, etc. High gain automatic voltage regulators are used in
excitation systems which invites low frequency oscillations in the system. In [2] proportional
integral derivative controller have been used which provides modulated signal to AVR for
damping out the low frequency oscillations. Literature survey shows that many conventional
power system stabilizers (CPSS) [3] have been considered consisting of lead-lag
compensators. The design of such CPSS involves the linearized dynamic model which is
based on linear control theory and gives poor performance under varying operating
conditions. Also it fails to maintain stability of electrical power system when subjected to
high loading conditions. Despite satisfactory performance of classical approaches like
H-infinity [4], LMI [5], and pole placement [6] techniques, meta-heuristic techniques are more
popular due to their simplicity of implementation and less computational efforts over the
classical techniques in finding the optimal solution. Moreover, real life problems including
design optimization problemsmake use of several types of variables, objective functions, and
constraint functions simultaneously in their formulation. Classical techniques are not
suitable for complex non-convex, non-smooth, and non-differentiable objective functions and
constraints. To overcome these problems, heuristic algorithms are sought after as they are
capable of solving the non-linear problems. Recently various Artificial Intelligent (AI)
techniques are being used for mitigating the problem related to low frequency oscillations.
Among the several AI techniques, artificial neural network (ANN) [7–11] has been widely
used for designing PSS. But ANNbased controllers are limited by their longer training period
and in the selection of numeral of layers and also, neurons for each of the layers. Fuzzy logic
controller (FLC) is also one of the AI techniques that have gained attention for controlling PSS
signal [12–14]. The main advantage of FLC is that it can provide control signal to the plant
which is based on linguistic rules derived from the operator. FLC’s can be designed by
making use of linguistic information obtained earlier from the control system and hence,
accurate model of the plant is not required. But problemwith this controller is that, it requires
hard work and fine tuning to achieve adequate signal. Recently, evolutionary based
optimization techniques are gaining more attention for designing of power system stabilizer.
Conventional PSS has been designed using various techniques like Genetic algorithm (GA)
[15–16], Particle swarm optimization (PSO) [17–19], differential evolution (DE) [20–21], firefly
algorithm (FA) [22], cuckoo search (CS) [23], evolutionary programming [24], tabu search [25],
simulated annealing [26], BAT [27] and rule based bacteria foraging [28].

Here, a new metaheuristic algorithm called collective decision optimization (CDO) [29] for
tuning PSS parameters in a multi machine power system has been presented. State space
representation of the system is done for performing small signal stability analysis. WSCC 3
machine 9 bus and IEEE 14 bus systems are considered as test systems. There are various
methods available for small signal stability analysis, such as Eigen value analysis,
synchronizing and damping torque analysis, frequency response and residue based analysis.
Behavior of the system has been studied with the help of eigenvalue analysis because of its
simplicity and efficiency over other techniques. The main advantage of eigenvalue technique
is that it can easily identify various electromechanical modes which are otherwise very
difficult to obtainwith othermentioned techniques. Also, the oscillations can be characterized

ACI
16,1/2

4



very easily and accurately. Results so obtained by this algorithm is compared with other
optimization techniques likeGWO,DE,WOAandCSAwhich shows that this proposed technique
enhances overall stability and mitigates the problem related to low frequency oscillations.

2. Dynamics of power system
The d–q axis transformation of synchronous machines has been considered for representing
dynamics of power system [30]. For large interconnected systems, the network is usually
considered as a constant impedance matrix including the loads. Generator fourth order model
consisting of four states have been considered formodeling synchronousmachine and fast acting
exciter or static exciter as excitation system. The state equations are modeled as shown in [31].

2.1 Generator equations

δ
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2.2 Exciter equation

E
•

fdi ¼ −
Efdi

TAi

þ KAi

TAi

ðVrefi � Vi þ VsiÞ (5)

These above mentioned set of nonlinear equations can be represented as follows:

X
•

¼ f ðX ; UÞ (6)

where X denotes state vectors given by X ¼ ½δ; ω; E 0
q; E

0
d; Efd�T and U denotes the input

vector which is the PSS output signal in this case. δ; ω; E
0
q; E

0
d; Efd denote respectively the

rotor angle, speed, internal voltage along quadrature axis and direct axis and field voltage
respectively. These equations can be represented in state space form and are given below:

X
•

¼ AX þ BU (7)

Here generator 4th order model and static exciter are considered. So the dimension of A
matrix is 5m3 5m and B matrix is 53 n, where, m and n denotes the number of machines
and number of PSS installed in the system respectively.

Investigation is done by considering various operating conditions like loading conditions,
line outages etc. Different loading conditions are presented in (Tables 1 and 2) for bothWSCC
3 machine 9 bus and IEEE 14 bus system respectively. Detailed system data has been taken
from [32,33]. Figures 1 and 2 represents single line diagram for the above mentioned test
systems. As far as small signal stability is concerned, it always deals with finding electro
mechanical modes as well as state variables which participate effectively in the system. So,
various modes of oscillations can be identified by the use of participation factors [34].
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Lightly loaded Normally loaded Heavily loaded
P Q P Q P Q

Generator
G1 0.9649 0.2330 1.7164 0.6205 3.5730 1.8143
G2 1.0000 �0.1933 1.6300 0.0665 2.2000 0.7127
G3 0.4500 �0.2668 0.8500 �0.1086 1.3500 0.4313

Load
L5 0.7000 0.3500 1.2500 0.5000 2.0000 0.9000
L6 0.5000 0.3000 0.9000 0.3000 1.8000 0.6000
L8 0.6000 0.2000 1.0000 0.3500 1.6000 0.6500
Local load at G1 0.6000 0.2000 1.0000 0.3500 1.6000 0.6500

Lightly loaded Normally loaded Heavily loaded
P Q P Q P Q

Load
L4 0.4000 0.1233 0.8000 0.1900 1.4000 1.3248
L5 0.0450 �0.2095 0.0900 0.0160 0.1000 1.1009
L9 0.1200 �0.1452 0.3500 0.1660 0.6000 0.5648

Table 1.
Different loading
conditions (p.u), for
WSCC 3 machine 9 bus
system.

Table 2.
Different loading
conditions (p.u), for
IEEE 14 bus system.

Figure 1.
WSCC 3 machine 9 bus
system [31].
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3. Power system stabilizer
The function of PSS is to provide an additional torque to the exciter to damp out low
frequency oscillations. The most commonly used PSS is speed based (CPSS). Throughout the
study, CPSS is considered for designing purpose. Figure 3 shows the functional block
diagram of CPSS.

The above diagram represents a two staged PSS, consisting of a gain block, a washout
circuit and dynamic compensator. In the gain block, KPSS is nothing but gain of the PSS
usually ranging from 0.01 to 50 [35]. Gain of PSS is an important factor as it is responsible for
providing adequate damping torque. Damping provided by PSS is proportional to the gain
until it reaches critical values, after which damping start decreasing. Washout circuit acts as
a high-pass filter. It passes all the required frequencies and eliminates steady-state signals in
the output of PSS which otherwise modifies generator terminal voltage. Tw is the time
constant of washout filter. Previous works show that, for noticeable improvement of system
damping, one has to considerTw as 10 seconds (s) [36]. Phase lead-lag compensation block can
compensate for the lag between PSS output and electrical torque and also eliminate the delay
between excitation and electrical torque. The transfer function of PSS can be expressed as:

Figure 2.
Single line diagram for
IEEE 14 bus system.

Figure 3.
Block diagram of two

staged PSS.
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GPSSðsÞ ¼ VsiðsÞ
ωiðsÞ ¼ KPSSi$

�
sTWi

1þ sTWi

�
$

�
1þ sT1i

1þ sT2i

�
$

�
1þ sT3i

1þ sT4i

�
(8)

where speeds deviation is taken as the input signal to the PSS.

4. Problem formulation
When power system is subjected to any disturbance, the decaying rate of oscillation is taken
care of by damping factors of the system and the amplitude is determined by the damping
ratio. Two sub objective functions have been considered here for tuning PSS parameters and
the assessment is done using eigenvalue analysis. First sub objective function considers
minimizing real part of eigenvalue and second part, considers maximizing the damping ratio,
as shown in [35]. Eigenvalue having larger negative real part with higher value of damping
ratio ensures a stable system. The damping co-efficient is derived from real and oscillatory
parts of eigenvalues. The objective function contains real part of the eigenvalues as well as
the damping co-efficient in order to tune PSS parameters. Therefore main objective is to
improve the real part of eigenvalues and damping ratio. Mathematically it can be represented
as:

Minimize I ¼ I1 þ I2 (9)

where

I1 ¼
Xn

i¼1

ðσ0 � σiÞ2; I2 ¼
Xn

i¼1

ðζ0 � ζiÞ2; (10)

Here, n is the number eigenvalues that is associated with the electromechanical modes. I1
represents the objective function related to real part of eigenvalues that leads them towards
left half of S plane and I2 refers to the improvement of damping ratios. σ represents the real
part and ζ, the damping ratio of the eigenvalues. Values of σ0 and ζ0 are taken as�2.5 and 0.1
respectively [17]. T1 and T3 are phase-lead time constants and vary in the range of 0.1–1.5s
[36]. T2 and T4 are phase-lag time constants and vary between 0.01 and 0.15 s [36]. Five
parameters namely, KPSS, T1, T2, T3 and T4 are optimized using different optimization
techniques and Tw is kept constant at 10 s. The effect of the objective function is shown in
Figure 4. All the optimization techniques considered in this paper has been applied to the
objective function described using (9) subject to following inequality constraints.

Kmin
PSS ≤KPSS ≤Kmax

PSS

Tmin
1 ≤T1 ≤Tmax

1

Tmin
2 ≤T2 ≤Tmax

2

Tmin
3 ≤T3 ≤Tmax

3

Tmin
4 ≤T4 ≤Tmax

4

9>>>>>>>=
>>>>>>>;

(11)

This paper mainly focuses on CDO, GWO, DE, WOA and CSA algorithms for tuning PSS
parameters to improve system stability under different operating conditions.

5. An overview of recently developed optimization
In the last few years some popular optimization algorithms have been developed. All these
algorithms are equally effective to solve complex optimization problem. These are CSA,
WOA, DE, GWO and CDO, etc. Brief descriptions of these algorithms are given below.
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5.1 Crow search algorithm
Crow search algorithm, as developed by A. Askarzadeh [38], is a metaheuristic algorithm
designed to handle constrained optimization problems. It exploits the intelligent behavior of
crows in searching and obtaining food. Crows are assumed to hide any excess food and feed
on them as and when required. They are also known to follow other crows to their hideouts
and steal their food. It is also assumed that the crowswhich committed thievery become extra
cautious regarding their hideouts so that their food can’t be stolen.

In CSA, exploitation and exploration are mainly controlled by the parameter of awareness
probability (AP) of crows, i.e., if it is being followed by another crow. If it is aware of being
followed, then it will assume any random position rather than going to its hideout. For
decreased awareness probability value, CSA conducts its search locally, where a present
good solution is obtained. Hence, low values of AP, increases exploitation capability.
IncreasedAP value results in the probability of conducting global search (randomization). As
a result, use of large values of AP increases exploration capability of the algorithm.

5.1.1 Pseudo-code for CSA.

Figure 4.
Region of eigenvalue
locations for objective

function I [37].
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5.2 Whale optimization algorithm
Whale optimization algorithm duplicates the hunting strategies of humpback whales. They
employ bubble net mechanism for hunting their preys. Their hunting strategy is close to that
of grey wolves and involves the following phases [39]:

5.2.1 Encircling prey. In this phase, it is assumed that the whales have knowledge about
the best position of their preys in the search space. After defining the best search agent, the
other search agents update their positions towards the best search agent as follows:

D
!¼ jC!$X

!
*ðtÞ � X

!ðtÞj (12)

X
!ðt þ 1Þ ¼ X

!
*ðtÞ � A

!
$D
!

(13)

where D
!

represents a difference vector, t represents the present time. A
!

and C
!

are coefficient

vectors. X
!

and X
!

p represent respectively positions of the whale and the prey. Following

equations calculate the coefficient vectors A
!

and C
!
:

A
!¼ 2$ a!$ r!1 � a! (14)

c!¼ 2$ r!2 (15)

where r!1 and r!2 are random numbers in the interval [0, 1] and components of a!are linearly
decreased from 2 to 0 iteratively.

5.2.2 Bubble – Net attacking method. This is the exploitation phase of the algorithm. Two
approaches have been given in [39] for mathematically representing the attacking method of
whales which are as follows:

5.2.2.1 Shrinking encircling. This is obtained by decreasing the value of a! in (14), which in

turn results in decrease in the range of A
!
. New position of whales can be set anywhere

between their original position and the present best position by setting A
!

randomly within
the interval [�1, 1].

5.2.2.2 Spiral updating position. It first calculates the distance betweenwhale and prey and
then creates a spiral equation mimicking the helical motion of humpback whales:

X
!ðt þ 1Þ ¼ D

!0
$eck$cosð2πkÞ þ X

!
*ðtÞ (16)

whereD0! ¼ jX!*ðtÞ− X
!ðtÞj represents the distance of ithwhale with respect to the prey, c is a

constant denoting shape of the spiral and k is any random number in the interval [�1, 1].
Assuming a 50% chance of the whales to adopt either shrinking encircling or spiraling

method, their positions are updated as follows:

Xðt þ 1Þ ¼ X→*ðtÞ � A→$D→ if p < 0:5

¼ D→
0
$eck$cosð2πkÞ þ X→*ðtÞ if p≤ 0:5

�
(17)

where p is a random number within the interval [0, 1].
5.2.3 Search for prey.This phase represents the exploration of the whales. This phase also

works by varying A
!

to search for prey. Whales search randomly in positions relative to one
another. In this phase, position of each search agent is updated with respect to a randomly
chosen whale instead of the best position, thereby enhancing exploration and allowing for

global search. In his phase, A
!

> 1. The following equations represent mathematical
modeling of the phase:

D
!¼

			C!$X
!

rand � X
!			 (18)

X
!ðt þ 1Þ ¼ X

!!
rand � A

!
$D
!

(19)
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where X
!!

rand represents position of any whale chosen randomly from the present
population.

5.2.4 Pseudo-code for whale optimization algorithm.

5.3 Differential Evolution
Differential Evolution [40] is a well-established evolutionary algorithm efficient in treating
non-linear, non-differentiable and multi-modal objective functions. DE employs three
operators, namely: mutation, crossover and selection to develop its population. The steps are
briefly described below:

5.3.1 Initialization. The population is randomly initialized within the upper and lower
bounds,

X 0
jk ¼ Xmin

k þ rand *
�
Xmax
k � Xmin

k

�
; j ¼ 1; 2; 3; . . . ; pop; k ¼ 1; 2; 3; . . . ; nv; (20)

where pop, nv, respectively denotes the population size and the number of control variables.
rand function generates uniform random numbers within the interval [0, 1]. Xmax

k and Xmin
k

respectively denote the upper and lower bounds of the kth control variable.
5.3.2 Mutation. In this phase, random extraction of several individuals from the

population and their geometrical manipulation takes place.Mutant vectorsX
=p
j are created by

unsettling a randomly created vector Xp
a with the difference of two other randomly selected

vectors Xp
b and Xp

c at pth iteration according to the following equation:

X
=p
j ¼ Xp

a þ F
�
Xp
b � Xp

c

�
; j ¼ 1; 2; 3; . . . ; pop:; (21)

F denotes the scaling factor and lies in the interval [0, 2]. It controls the perturbation in
mutation, thereby improving convergence. Exploration capability is controlled by the
population size and the number of individuals extracted randomly in the strategy.

5.3.3 Crossover. In this phase, gene exchange between the individuals takes place. The
parent vector (target vector) interacts with the mutated vector and creates a trial vector,
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which inherits parental genes with some probability. Crossover is represented with the
following equation:

X
==p
jk ¼ X

=p
jk if rand k < Cr or k ¼ q

¼ Xp
jk otherwise

9=
; (22)

where j ¼ 1; 2; 3; . . . ; pop; k ¼ 1; 2; 3; . . . ; pop;Xp
jk,X

=p
jk andX

==p
jk denote respectively the kth

individual of the jth target vector, mutant vector and trial vector at pth iteration. Randomly
chosen index q∈ ðk ¼ 1; 2; 3; . . . ; nvÞ, ensures that at least one parameter from the mutant
vector is taken by it even if the crossover probability Cr is zero. Cr ∈ ½0; 1� helps to maintain
diversity of the population so that the algorithm doesn’t get trapped into local optima.

5.3.4 Selection. This phase selects the best set amongst the trial vector and the updated
target vector by comparing their objective functions. The vector which gives the best value of
the objective function (maximum or minimum depending upon the problem), gets selected.
The following equation represents the selection procedure:

Xpþ1
j ¼ X

==p
j if f

�
X

==p
j

�
≤ f

�
Xp
j

�

¼ Xp
j otherwise

9=
; j ¼ 1; 2; 3; . . . ; pop: (23)

5.3.5 Pseudo- code for DE algorithm.

Xj(k) denotes the kth variable of solution Xj. Yj denotes the offspring. randint (1, nv)
represents a uniformly distributed random integer between 1 and nv. randk (0, 1) represents
real number randomly distributed in (0, 1). Different DE strategies are available in [40] for the
creation of a candidate. Strategy 1 has been discussed here.

5.4 Grey wolf optimizer
GWO is a recently developed meta-heuristic optimization technique, which follows the
hunting strategy applied by a grey wolf [41]. Grey wolves live and hunt in a pack of 5–12
members on an average. They are categorized as alpha, beta, delta and omega, whereby alpha
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is placed at the top level of hierarchy, followed by beta, delta and omega. Their hunting
strategy involves tracking the position of prey, chasing, encircling and attacking. The steps
are discussed below.

5.4.1 Encircling. The following equation represents encircling behavior of grey wolf:

D
!¼ jC!$X

!
pðtÞ � X

!ðtÞj (24)

X
!ðt þ 1Þ ¼ X

!
pðtÞ � A

!
$:D
!

(25)

where D
!

represents a difference vector, t represents the present time. A
!

and C
!

are coefficient

vectors. X
!

and X
!

p represent respectively positions of the grey wolf and the prey. Following

equations represent the coefficient vectors A
!

and C
!
:

A
!¼ 2$ a!$ r!1 � a! (26)

C
!¼ 2$ r!2 (27)

where r!1 and r!2 are random in the interval [0, 1] and components of a! are linearly
decreased from 2 to 0 iteratively. (26) and (27) are used to update position of grey wolves.

5.4.2 Hunting strategy. Alpha guides the hunting process. Beta, delta may participate
occasionally in this part. It is assumed that alpha, beta and delta have the best knowledge
about the position of the prey in the search space. Following equations represent the overall
hunting process:

D
!

α ¼ jC!1$X
!

α � X
!j (28)

D
!

β ¼ jC!2$X
!

β � X
!j (29)

D
!

δ ¼ jC!3$X
!

δ � X
!j (30)

X
!

1 ¼ X
!

α � A
!

1$ðD!αÞ (31)

X
!

2 ¼ X
!

β � A
!

2$ðD!βÞ (32)

X
!

3 ¼ X
!

δ � A
!

3$ðD!δÞ (33)

X
!ðt þ 1Þ ¼ X

!
1 þ X

!
2 þ X

!
3

3
(34)

where D
!

α, D
!

β and D
!

δ are respectively the difference vector of alpha, beta and delta. X
!

1, X
!

2

and X
!

3 represent position of the prey with respect to alpha, beta and delta respectively X
!

α,

X
!

β, X
!

δ represent positions of the alpha, beta and delta wolves respectively.
5.4.3 Attacking. The wolves attack and finish the hunt when the prey stops moving.

Exploitation capability of GWO technique is governed by vector A
!

which is a random
number between ½−2a; 2a�. It allows other search agents to update their position based upon
the positions of alpha, beta and delta wolves, and finally attack the prey.

5.4.4 Search for prey. Current position of alpha, beta and delta dictates the search
process. Wolves diverge from each other during searching, and converge while attacking
the prey. To mathematically model divergence, vector A

!
is associated with some random

values greater than 1 and less than�1 in order to compel the search agents to diverge from
each other. This emphasizes the exploration capability of GWO to search for global
optimum value.
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5.4.5 Pseudo-code for GWO

5.5 Collective decision optimization algorithm
Collective decision optimization algorithm (CDO) as described by Zhang et al. [29], is a
relatively new metaheuristic algorithm based on the human social behavior influenced by
their decision making capabilities. Human beings tend to collect fellows having different
capabilities and form a group to arrive at a decision regarding a problem or a solution.
Members of the group express as well as exchange ideas and finally select the best idea
amongst all. Final decision is influenced by different factors such as: conformity in the
members’ thinking, experience, leader, viewpoint of other members and innovation.

The terms relating the common evolutionary programs with CDO are as follows:

Population ¼ Gathering; Population size ¼ Total members present in the meeting

or deciders; Agent ¼ Decider; Feasible solution ¼ Plans or ideas;

Fitness value ¼ plan quality;Optimal solution ¼ bestidea:

The decision making abilities are classified into different phases as follows:
5.5.1 Formation of group. A group of P members is randomly formed within the search

space of dimension D as follows:

Kj
i ¼ LBj þ randð0; 1Þ3

�
UBj � LBj

�
(35)

where i51, 2, 3, . . ., P; j51, 2, 3, . . ., D. rand denotes any random number in the interval
[0, 1], and LB and UB represents the lower and upper bounds of the control variables.

5.5.2 Experience phase. In ameeting of the group, deciders bring forward their plans based
on their personal experiences. In CDO, this is defined as the best position of the agentΦA and
can be expressed as:

Kinew ¼ Ki þ randð0; 1Þ3 step size3 d0
d0 ¼ ΦA � Ki (36)

where rand is any random number selected from [0, 1], step_size denotes step size for
present iteration, and d denotes the direction in which the next decider is selected to share
his/her plan.

5.5.3 Others’ idea phase. Exchange of ideas between the agents take place in this phase
and an agent accepts others’ ideas if those are superior to her/his idea. An agentKj, is selected
randomly from the population to exchange idea with Ki. The agent having the better quality
plan is selected. This phase is expressed as follows:
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K
ð1Þ
inew ¼ Kinew þ randð0; 1Þ3 step size3 d1

d1 ¼ beta1 3 d0 þ beta2 3 ðXj � XiÞ (37)

where j is the agent selected from the interval [1,P], d1 is the newdirection ofmovement and beta1
and beta2 are two numbers randomly respectively selected from the intervals [�1, 1] and [0, 2].

5.5.4 Group-thinking phase. This phase describes the way agents’ decisions are influenced
by the direction inwhich themaximum ideas are inclined to. The position of the group thinking
can be assumed to be the geometric center ðΦGÞ of each agent. It may be expressed as:

ΦG ¼ 1

P
ðK1; K2; . . . ; KPÞ (38)

The updated position of the agent is calculated as:

newK
ð2Þ
i ¼ newK

ð1Þ
i þ randð0; 1Þ3 step size3 d2

d2 ¼ beta1 3 d1 þ beta2 3 ðΦG � KiÞ (39)

where d2 is the new direction in which the agents ideas progresses.
5.5.5 Leader phase.Overall decision is made under the influence of the leader who decides

the direction of movement and final output. Mathematically it can be represented as:

newK
ð3Þ
i ¼ newK

ð2Þ
i þ randð0; 1Þ3 step size3 d3

d3 ¼ beta1 3 d2 þ beta2 3 ðΦL � KiÞ (40)

where d3 is the new direction in which the agents ideas progresses. Leader ðΦLÞ is the best
agent in the meeting.

The leader has the power to change his/her idea by himself/herself. Randomwalk strategy
is used by this algorithm for local search.

newKp ¼ ΦL þWp ðp ¼ 1; 2; 3; 4; 5Þ (41)

where Wp is any vector randomly selected from within the interval [0, 1].
5.5.6 Innovation phase. Innovation refers to the process involved in improving the decision

making process. This is achieved by making small perturbation in the existing variables
(mutation factors) and can be implemented as:

rand1≤ M

newK
ð4Þ
i ¼ newK

ð4Þ
i

newK
ð4;FÞ
i ¼ LBðFÞ þ rand23 ðUBðFÞ � LBðFÞÞ

(42)

where rand1 and rand2 are two uniformly distributed random numbers within [0, 1], F is
randomly generated within interval [1, D], M denotes mutation factor used to avoid
premature convergence.

Proper selection of the step_size plays an important part in deciding exploration and
exploitation of the population. Larger valued step_size in the initial stages ensure better
exploration and smaller values in the later parts ensure proper exploitation of the population.
An adaptive mechanism used by the algorithm is described below:

step sizeðtÞ ¼ 2� 1:7



t � 1

T � 1

�
(43)

where t denotes the present iteration and T denotes the maximum iteration number.
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5.5.7 Pseudo-code for CDO

Steps involved in parameter tuning of PSS using CDO are as follows:

Step 1: Randomly initialize a group of P members within the search space having
dimension D. Set the members i.e., control parameters (PSS gain and lead-lag time
constant) of the group within their upper and lower bounds based on (11). Choose
maximum fitness evaluation (maxFE).

Step 2: Analyze small signal stability of the system for each member of the group and
obtain eigenvalues and check whether they satisfy the inequality constraints of (11).

Step 3: Determine the plan quality (fitness function) as per (9) for each group, which is
eigenvalue based. Store total number of fitness evaluation within the variable FE.

Step 4: Identify the new best position of agents (Kinew) from the population, based on their
quality of plan (fitness values). This forms the modified group set.

Step 5: Update the population of groups as per the different phases of CDO employing
(36)–(42).

Step6:Find the best plan and best group. Best plan is theminimumof the fitness function
evaluated for each solution set and best group is the solution set which gives the best plan.

Step 7: Go to step 5 and repeat until value of FE reaches the predefined maxFE.

6. Results and discussion
The purpose of this section is to analyze system performances with the help of a newly
proposed algorithm. To show the application and superiority of CDO, two test systems are
considered and mentioned in the earlier Section 2. First one is WSCC 3 machine 9 bus system
and second one is IEEE 14 bus system.
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6.1 Results regarding PSS parameters tuning
Eigenvalues obtained using CDO are used to determine stability of the system and are
comparedwith those achieved byGWO,DE,WOAandCSA. Results demonstrate supremacy
of CDO over GWO and CSA in assessing small signal stability of the system. To show the
effectiveness of the proposed algorithm in mitigating low frequency oscillations, PSS were
installed in all the machines for both test systems. System eigenvalues and damping ratios of
electromechanical mode are shown in Tables 3 and 4 respectively, when both systems are
subjected to different loading conditions. Even though PSS is for improving the damping
torque primarily, during the disturbances it is expected to make slight contribution to
synchronizing torque enhancement, also during post disturbance the synchronizing torque

Light load Normal load High load

No stabilizer �1.43600 ± 13.275i, 0.10755 �0.90694 ± 13.576i, 0.06666 �0.79932 ± 13.633i, 0.05853
�0.37734 ± 9.1310i, 0.04129 �0.18488 ± 9.0462i, 0.02043 �0.16828 ± 8.7924i, 0.01914

CSA PSS �1.82340 ± 13.247i, 0.13636 �1.30310 ± 13.533i, 0.09585 �1.13930 ± 13.593i, 0.08352
�1.15910 ± 9.2183i, 0.12476 �1.08450 ± 9.0885i, 0.11849 �1.20850 ± 8.8804i, 0.13484

WOA PSS �1.83560 ± 13.239i, 0.13730 �1.32500 ± 13.563i, 0.09720 �1.20850 ± 14.164i, 0.08500
�1.14360 ± 9.0870i, 0.12490 �1.12500 ± 10.234i, 0.10930 �1.52640 ± 9.5460i, 0.15790

DE PSS �2.05600 ± 13.567i, 0.14980 �1.28900 ± 13.345i, 0.09610 �1.34500 ± 14.165i, 0.09450
�1.20100 ± 9.3450i, 0.12750 �1.21000 ± 10.548i, 0.11400 �1.98450 ± 9.3298i, 0.20730

GWO PSS �1.90820 ± 13.453i, 0.14044 �1.42740 ± 13.743i, 0.10331 �1.24250 ± 13.774i, 0.08984
�1.29170 ± 9.7794i, 0.13095 �1.15540 ± 9.8455i, 0.11655 �2.46510 ± 8.8214i, 0.26913

CDO PSS �2.37830 ± 13.389i, 0.17489 �1.84620 ± 13.592i, 0.13459 �1.56610 ± 13.578i, 0.11458
�1.77680 ± 9.8859i, 0.17690 �1.95210 ± 9.7341i, 0.19663 �2.07950 ± 9.5543i, 0.21267

Light load Normal load High load

No stabilizer �1.2003 ± 12.253i, 0.097493 �1.1890 ± 12.050i, 0.098195 �1.1796 ± 11.766i, 0.099755
�2.7730 ± 9.7799i, 0.272790 �2.7507 ± 9.7174i, 0.272370 �2.7175 ± 9.6111i, 0.272080
�0.7398 ± 10.671i, 0.069159 �0.7313 ± 10.682i, 0.068298 �0.7064 ± 10.666i, 0.066083
�0.8589 ± 9.5242i, 0.089816 �0.8027 ± 9.4623i, 0.084523 �0.7355 ± 9.3467i, 0.078448

CSA PSS �3.3240 ± 8.1049i, 0.37945 �3.7132 ± 8.6628i, 0.39397 �3.3451 ± 8.7049i, 0.35870
�2.3269 ± 7.9262i, 0.28168 �2.4751 ± 8.0025i, 0.29548 �2.9269 ± 8.9262i, 0.68204
�2.0684 ± 11.863i, 0.17177 �1.9798 ± 11.856i, 0.16471 �2.0684 ± 11.863i, 0.17177
�1.2044 ± 10.139i, 0.11796 �1.2070 ± 10.149i, 0.11810 �1.2044 ± 10.139i, 0.11796

WOA PSS �3.7840 ± 8.9742i, 0.38853 �4.129 ± 8.61290i, 0.43229 �4.3210 ± 8.9742i, 0.43382
�2.5345 ± 7.5388i, 0.31867 �2.7834 ± 7.7717i, 0.33717 �2.5340 ± 7.1988i, 0.33203
�2.5745 ± 11.650i, 0.21578 �2.4845 ± 11.676i, 0.20813 �2.5745 ± 11.650i, 0.21578
�1.0245 ± 9.9000i, 0.10294 �1.0412 ± 9.9213i, 0.10437 �1.0245 ± 9.9000i, 0.10294

DE PSS �4.9435 ± 8.9077i, 0.48525 �5.0835 ± 9.0329i, 0.49044 �4.9435 ± 8.9077i, 0.48525
�3.4404 ± 8.2963i, 0.38306 �3.4798 ± 8.3972i, 0.38283 �3.4404 ± 8.2963i, 0.38306
�3.9331 ± 10.129i, 0.36197 �3.7253 ± 10.479i, 0.33496 �3.9331 ± 10.129i, 0.36197
�1.0328 ± 9.5096i, 0.10797 �1.0121 ± 9.5751i, 0.10512 �1.0328 ± 9.5096i, 0.10797

GWO PSS �5.1465 ± 7.5119i, 0.56519 �5.2455 ± 7.4778i, 0.57427 �5.1465 ± 7.5119i, 0.56519
�4.6937 ± 11.095i, 0.38962 �4.6286 ± 11.300i, 0.37904 �4.6937 ± 11.095i, 0.38962
�1.5901 ± 12.192i, 0.12933 �1.4915 ± 12.228i, 0.12108 �1.5901 ± 12.192i, 0.12933
�1.5868 ± 8.0461i, 0.19349 �1.5595 ± 8.1410i, 0.18814 �1.3868 ± 8.0462i, 0.16985

CDO PSS �7.0070 ± 7.8545i, 0.66570 �7.3189 ± 7.6198i, 0.69272 �7.0070 ± 7.8545i, 0.66570
�4.7360 ± 7.9699i, 0.51085 �4.8228 ± 8.0955i, 0.51180 �4.7360 ± 7.9699i, 0.51085
�5.2410 ± 11.890i, 0.40334 �5.2440 ± 11.909i, 0.40300 �5.2410 ± 11.890i, 0.40334
�4.0692 ± 10.336i, 0.36633 �4.0529 ± 10.618i, 0.35661 �4.0692 ± 10.336i, 0.36633

Table 3.
Electromechanical

modes and damping
ratios for WSCC 3

machine 9 bus system.

Table 4.
Electromechanical

modes and damping
ratios for IEEE 14 bus

system.
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contribution should be slightly positive apart from itsmain and substantial positive damping
torque contribution. Therefore, all these means imaginary part of electromechanical modes
should slightly increase.

It is very much clear from the above table that CDO is able to shift all real parts of
electromechanical modes towards left half of S plane having enhanced damping ratios under

CSA WOA DE GWO CDO

Generator1 Kpss 17.07600 5.017000 11.08400 11.84100 2.569100
T1 (s) 0.238070 0.100000 0.134700 1.034500 1.252700
T2 (s) 0.010523 0.052334 0.028844 0.017099 0.071439
T3 (s) 0.346370 1.410500 0.983990 0.926750 1.291200
T4 (s) 0.063216 0.029970 0.139400 0.119170 0.117900

Generator2 Kpss 1.339800 11.89800 1.957700 1.931500 1.917600
T1 (s) 1.245200 0.335300 0.327970 0.267260 0.569380
T2 (s) 0.010000 0.010000 0.026173 0.016836 0.027684
T3 (s) 0.386820 0.245860 1.404600 1.500000 1.147500
T4 (s) 0.010000 0.029061 0.010391 0.010000 0.025351

Generator3 Kpss 2.376200 4.329900 4.599500 3.991800 6.316000
T1 (s) 0.100000 0.373800 0.931190 0.160110 0.188030
T2 (s) 0.052728 0.119430 0.082403 0.088431 0.131070
T3 (s) 0.100000 0.100000 0.100000 0.169610 0.206240
T4 (s) 0.046983 0.120820 0.044372 0.030897 0.150000

Simulation time (s) 31.49850 30.51320 28.21950 25.46820 21.41550

CSA WOA DE GWO CDO

Generator1 Kpss 4.132000 4.341400 8.152700 5.791300 4.630100
T1 (s) 0.100000 0.101560 1.338900 0.681330 0.114800
T2 (s) 0.046901 0.040558 0.010000 0.036983 0.050230
T3 (s) 1.500000 1.386900 0.100000 0.262250 1.306500
T4 (s) 0.010000 0.015280 0.010000 0.035294 0.020977

Generator2 Kpss 4.012100 2.405900 17.66600 16.38100 43.38400
T1 (s) 1.086200 1.058800 0.297860 0.517430 1.326600
T2 (s) 0.087176 0.101770 0.010000 0.044588 0.150000
T3 (s) 0.866110 1.065200 0.170540 1.282100 0.167960
T4 (s) 0.137770 0.077238 0.010000 0.064138 0.143540

Generator3 Kpss 34.25100 32.00400 4.885900 26.79100 48.94900
T1 (s) 1.216600 1.500000 0.713230 1.235700 0.397110
T2 (s) 0.039207 0.036996 0.052578 0.119860 0.066386
T3 (s) 0.150150 0.149710 0.265630 0.156280 0.144350
T4 (s) 0.024825 0.015512 0.074015 0.105860 0.115220

Generator4 Kpss 21.52800 22.09600 50.00000 30.51800 19.50700
T1 (s) 1.127600 0.688850 0.508050 1.250400 0.289100
T2 (s) 0.108970 0.101430 0.010000 0.114200 0.043982
T3 (s) 0.151170 0.255610 0.249730 0.104030 1.453000
T4 (s) 0.083815 0.083591 0.150000 0.074985 0.082137

Generator5 Kpss 30.56200 30.51300 23.40200 40.91000 49.94000
T1 (s) 0.223230 0.204670 0.984220 0.350090 0.274500
T2 (s) 0.150000 0.150000 0.021779 0.034848 0.098783
T3 (s) 1.226700 1.078100 0.100000 1.218700 1.491300
T4 (s) 0.114320 0.115730 0.100000 0.069048 0.113400

Simulation time (s) 35.58670 32.95680 30.45380 28.95060 25.12340

Table 5.
Tuned PSS parameters
for various algorithms
for WSCC 3 machine 9
bus system.

Table 6.
Tuned PSS parameters
for various algorithms
in case of IEEE 14 bus
system.
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light, normal and heavy loading conditions as compared to other techniques. To show the
robustness of the proposed design, PSS parameters are tuned for a single operating point i.e.,
the best group for that point is obtained. Then, all operating points are analyzed for this group
and their responses are obtained. For each operating condition CDO provides robust
performance and achieves better damping characteristics as compared to GWO, DE, WOA
and CSA based PSS. The set values for the PSS parameters for different algorithms are listed
in (Tables 5 and 6) respectively for both the test systems.

All the simulations have been done usingMATLAB software. A population size of 50 has
been considered in all cases and convergences of the algorithms have been studied for 100
iterations. Figure 5. Represents the convergence characteristics for both WSCC 3 machine 9

Figure 5.
Variations in objective

functions.
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bus and IEEE 14 bus system respectively. It shows decreasing objective function in each
iteration for all the optimization techniques which finally settles down to zero (I 5 0). This
indicates that all electromechanical modes have entered into the D-space in the negative half
of s-plane. Also, CDO converges faster (16 iterations for first test system and 20 for second
one) as compared to GWO (40 iteration for 9 bus system 42 for IEEE 14 bus), DE (45 iterations
for 9 bus 54 for IEEE 14 bus system), WOA (52 and 62 respectively) and CSA (57 and 70
iterations respectively).

6.2 Results regarding PSS location
AsPSSs are very expensive, it is not wise to install PSS in all the generators. CDO is applied in
this paper to find out optimal locations for PSS. Additionally it is also required to maximize

No. PSS PSS set G1 G2 G3 G4 G5 Damping ratio

2 PSS Kpss 5.980200 27.62800 0.097259
T1 (s) 0.103650 1.339300
T2 (s) 0.451010 0.013734
T3 (s) 0.101470 0.829560
T4 (s) 0.117730 0.113180

3 PSS Kpss 42.40910 14.36160 9.101760 0.110383
T1 (s) 0.100792 0.620330 0.923394
T2 (s) 0.135107 0.069186 0.148245
T3 (s) 1.008670 0.527537 0.333954
T4 (s) 0.013524 0.127541 0.076324

4 PSS Kpss 4.975100 20.47500 13.59100 44.49700 0.303640
T1 (s) 0.608230 1.017200 1.302800 0.491490
T2 (s) 0.023022 0.092357 0.029223 0.122930
T3 (s) 0.327650 0.194900 0.804570 0.856790
T4 (s) 0.053213 0.129930 0.098747 0.135250

5 PSS Kpss 4.630100 43.38400 48.94900 19.50700 49.94000 0.366330
T1 (s) 0.114800 1.326600 0.397110 0.289100 0.274500
T2 (s) 0.050230 0.150000 0.066386 0.043982 0.098783
T3 (s) 1.306500 0.167960 0.144350 1.453000 1.491300
T4 (s) 0.020977 0.143540 0.115220 0.082137 0.113400

With CDO algorithm
No. PSS PSS set G1 G2 G3 Damping ratio

1 PSS Kpss 11.52410 0.065809
T1 (s) 0.301562
T2 (s) 0.010000
T3 (s) 0.419568
T4 (s) 0.010000

2 PSS Kpss 3.096100 4.126400 0.167550
T1 (s) 0.674120 0.130090
T2 (s) 0.020884 0.069851
T3 (s) 0.597990 0.202520
T4 (s) 0.010000 0.092616

3 PSS Kpss 2.569100 1.917600 6.316000 0.174890
T1 (s) 1.252700 0.569380 0.188030
T2 (s) 0.071439 0.027684 0.131070
T3 (s) 1.291200 1.147500 0.206240
T4 (s) 0.117900 0.025351 0.150000

Table 8.
PSS settings and
locations set obtained
for IEEE 14 bus
system.

Table 7.
PSS settings and
locations set obtained
for WSCC 3 machine 9
bus system.
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the damping ratio and minimize the real parts of the electro-mechanical modes, subjected to
various combinations of PSS. To provide acceptable damping to the system as well as to
make it stable, minimum one PSS is considered for the first test system and two for the second
one. Number of available PSS is assumed as 1, 2 and 3 for the first test system and 2, 3, 4, 5 for
second one respectively. Now by using (9) and applying CDO technique, the optimal location
of PSS is found out for both the test systems and are tabulated in (Tables 7 and 8)
respectively.

Figure 6.
Speed deviations for
normal load (WSCC 3

machine 9 bus system).
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For the first case it can be observed fromTable 7, thatG1, G2 andG3 are the optimal locations for
installing three PSS, whereas for two PSS case, Generator G2, G3 are the optimal locations. In
case of single PSS installation, generator G3 is obtained as optimal location. For all the optimal
locations, the tuned values of PSS parameters and the least damping rations are summarized in
the above table. The minimum damping ratio is 0.065809 in case of one PSS and increases to
0.16755 when two PSS are installed in two generators. This damping ratio further increased to
0.17489 when PSS are installed in all three generators. When two PSSs are installed in the

Figure 7.
Speed deviations for
light load (WSCC 3
machine 9 bus system).
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system, significant improvement in damping ratios are observed as compared to the case when
single PSS is installed. Also there cannot be seen any huge differences when three PSSs are
installed. Therefore installing two PSSs in the system provides sufficient damping to low
frequency oscillations and as a conclusion G2, G3 may be considered as optimal locations.

Similarly, for the second test system it has been found from Table 8, that in case of four
generators case, G1, G3, G4, G5 combination is found to be optimal, whereas G1, G3, G4 and G3,

Figure 8.
Speed deviations for
heavy load (WSCC 3

machine 9 bus system).
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G2 are the best combinations in case of three PSS and two PSS respectively. It is observed that
in case of four PSS i.e., G1, G3, G4, G5 combination provides an acceptable damping to the
system to maintain its stability. So, for second test system, G1, G3, G4, G5 combination may be
considered as the optimal location.

6.3 Response of the system under different loading conditions
For validation of the proposed algorithm some time domain simulations have been done for
both WSCC 3 machine 9 bus and IEEE 14 bus systems when subjected to different loading
conditions as well as for faulted condition.

6.3.1 Responses for WSCC 3machine 9 bus system.A three phase fault is applied near bus
7 at time 0.1 s and cleared at 0.2 s (fault clearing time) and responses are obtained for lightly
loaded, normally loaded and heavily loaded conditions.

Figure 6 shows responses of Δω12, Δω13 during severe fault under normal loading
conditions obtained by each of the algorithms mentioned above. It can be observed that the
newly proposed CDO is more stabilized than other optimization techniques and requires
mean settling time of 2.4 s to mitigate the system oscillations, whereas GWO, DE, WOA and
CSA requires more time to settle down.

Figure 7 shows response of the system under lightly loaded conditions and it can be seen
clearly that CDO provides adequate damping to the oscillatory modes and also reduces the
mean settling time to 2.1 s which is lesser than other optimizing techniques.

Figure 8 shows response of the system under heavy loaded conditions. Similarly mean
settling times for CDO is 2.5 s whereas GWO and CSA take more time to settle down.
Therefore it can be concluded that in every case CDO designed PSS gives better performance
and is able to provide sufficient damping to the system tomitigate low frequency oscillations.

It is observed from Figures 6(a), 7(a), 8(a) that first swing has a steeper peak, and the
second peak is bigger than the first swing. To demonstrate this, response of electrical power
output varying with time for each machine is plotted under heavily loaded condition for no
PSS installed in it. From Figure 9. it is clear that the peak of Pe2 in the second swing is lesser
than first one. So, there will be more acceleration and that is the reason machine has less

Figure 9.
Electrical Output (Pe)
under heavy load when
PSS is not installed
(WSCC 3machine 9 bus
system).
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Figure 10.
Speed deviations for

light load (IEEE 14 bus
system).
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synchronizing strength in the second swing, giving higher peak. Similar explanation will be
applicable for light load and normal load conditions.

6.3.2 Responses for IEEE 14 bus system. Performance of CDO has been analyzed for
different cases and comparison of results with those of other algorithms demonstrates its
efficiency in enhancing overall system stability. In order to assess the capability of CDO in
handling a larger and complex system, it has also been applied to IEEE 14 bus test system.
The system is tested under all conditions studied forWSCC 3machine 9 bus systems. A three
phase fault is applied near bus 10 at time 0.1 s and cleared at 0.2 s (fault clearing time) and
responses are observed. Every possible scenario for obtaining speed deviation curves have
been tried out, but for the sake of brevity, few of the responses are shown in this paper. From
the plots obtained, Figure 10 it can be observed that CDO based PSS achieved the lowest
settling time as compared to other algorithms which means better damping and enhance
better stability of the system.

7. Conclusion
New metaheuristic optimization techniques, CDO, GWO, DE, WOA and CSA have been
presented in this paper for the optimal design of CPSS. Best tuned parameter set for the PSS
are obtained for CDO. It is observed that damping ratios of the weakly damped oscillatory
modes have improved after the addition of PSS, thereby enhancing the dynamic performance
of system stability greatly. Simulated results established CDO’s superiority over GWO, DE,
WOA and CSA optimization techniques. The robustness of the designed PSS controller for
damping out oscillations under different operating conditions is also established. Application
of the designed controller in large-scale multi area power system network under different
fault conditions may be done in the future.
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