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Abstract

Purpose — The purpose of this paper is to present the development of an optimal design framework for high altitude long endurance solar
unmanned aerial vehicle. The proposed solar aircraft design framework provides a simple method to design solar aircraft for users of all levels of
experience.

Design/methodology/approach — This design framework consists of algorithms and user interfaces for the design of experiments, optimization
and mission analysis that includes aerodynamics, performance, solar energy, weight and flight distances.

Findings — The proposed sizing method produces the optimal solar aircraft that yields the minimum weight and satisfies the constraints such as the
power balance, the night time energy balance and the lift coefficient limit.

Research limitations/implications — The design conditions for the sizing process are given in terms of mission altitudes, flight dates, flight
latitudes/longitudes and design factors for the aircraft configuration.

Practical implications — The framework environment is light and easily accessible as it is implemented using open programs without the use of any
expensive commercial tools or in-house programs. In addition, this study presents a sizing method for solar aircraft as traditional sizing methods fail
to reflect their unique features.

Social implications — Solar aircraft can be used in place of a satellite and introduce many advantages. The solar aircraft is much cheaper than the
conventional satellite, which costs approximately $200-300m. It operates at a closer altitude to the ground and allows for a better visual inspection.
It also provides greater flexibility of missions and covers a wider range of applications.

Originality/value — This study presents the implementation of a function that yields optimized flight performance under the given mission
conditions, such as climb, cruise and descent for a solar aircraft.
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satellite, which costs approximately $200-300m. It operates at
a closer altitude to the ground and allows for a better visual
inspection. It also provides greater flexibility of missions and
covers a wider range of applications (Romeo ez al., 2004).
Furthermore, it is self-launching, easy to withdraw for
maintenance and easy to relocate to cover other areas.

Although the features of the solar-powered electric airplane
are promising, they can only be implemented through the
successful integration of several essential technologies, which
include light, high-efficiency solar energy conversion and
storage devices and innovative, ultra-light-weight airframe
materials and structural concepts. Furthermore, airfoils,
propellers and airplane configurations must yield an efficient
aerodynamic performance at the Reynolds numbers of 10° or
less (Youngblood and Talay, 1982). The objective of this study
is to develop a software that incorporates the elements of these
essential technologies in the analysis and design processes of
the solar powered flight.

Frulla and Cestino (2008) carried out the research with the
aim of designing a HALE unmanned aerial vehicle (UAV)
solar-powered platform and manufacturing a scale-sized solar-
powered prototype. Zhu et al. (2014) discussed the historical
development and the challenges being faced by solar-powered
airplanes. Panagiotou ez al. (2016) analyzed the efficiency of the
solar panels and the efficiency ratios of each component of the
power system.

The aircraft sizing process is a critical aspect of the system-
level study because it initiates the design and analysis activities,
which include internal layout, cost analysis and system
effectiveness analysis. For instance, one of the results of aircraft
sizing, the initial estimation of thrust or power required, is a
primary input to the preliminary investigation of the engine
company, particularly if a new propulsion system is jointly
developed. The probabilistic aircraft sizing method can be
applied to aircraft design optimization problems in which
multidisciplinary design parameters such as wing geometry, tail
arrangement and propulsion system design parameters are
included as design variables. In the optimization problem, the
design variables include disciplinary design variables and the
original sizing variables. In addition, a number of constraints
resulting from decoupling the disciplinary analyzes may be
added.

However, no currently available tools provide a
comprehensive, systematic and generalized aircraft sizing
method, which 1is applicable to a wide range of
unconventionally powered aircraft (Nam ez al., 2005).

In the case of a solar energy-based aircraft, the amount of
electric energy supply is determined by the wing area,
photovoltaic (PV) cell efficiency and solar irradiation. As the
available energy is directly related to the wing area, the
configuration design and the required electric energy should be
considered simultaneously. Because of the interconnection
among the configuration, power available and power required,
the design process of the solar energy-based aircraft requires a
unique approach. This study develops a stochastic approach for
the aircraft sizing to solve these problems and applies it to the
sizing optimization of a solar HALE UAV. Another
achievement of this study is the implementation of the
proposed method, which is different from conventional aircraft
sizing methods.
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It is important for a solar-powered aircraft analysis to
account for the ability to reach the mission altitude and the
energy balance at high altitudes. This is because the energy
sources of this aircraft are solar energy, which is only available
during the daytime and fuel cells and batteries, which are used
at night. In addition, the analysis of the configuration variables
and aerodynamic characteristics seriously demands the
employment of surrogate models, which provides fast and
approximate solutions. This is because the optimization within
the sizing process requires frequent changes to the wing area,
aspect ratio and weight, and hence, the recalculation of
aerodynamic coefficients. This process can be very costly, as
the aerodynamic analysis requires significant computational
loads. Although such efforts to enhance computational
efficiencies, when the objective and/or constraint functions are
evaluated by computationally-expensive analyzes such as
computational fluid dynamics, a probabilistic design approach
would be computationally intractable. To alleviate such a
problem, the so-called surrogate-based approach for analysis
and optimization can play a very valuable role. The surrogates
are constructed using data drawn from high-fidelity models and
provide fast approximations of the objectives and constraints at
new design points, thereby making sensitivity and optimization
studies feasible. This study reflects these latest techniques and
develops a conceptual design optimization tool for a solar-
powered HALE UAV. Moreover, this tool enhances the
efficiency of the proposed design/development framework.

National aeronautics and space administration also used
Microsoft Excel®/Visual Basic and inherent graphical user
interfaces for its HALE UAYV study (Nickol ez al., 2007). It used
in-house programs for the aerodynamic and performance
analyzes. The analysis components are integrated through
ModelCenter and the optimization module. In contrast, this
study avoids the use of ModelCenter and uses only Excel/
Visual Basic to integrate the optimization and other modules.
Although ModelCenter (2014) provides excellent connectivity
and integrity in distributed environments, the proposed
framework works with only a few different platforms that Excel/
Visual Basic can effectively manage. Furthermore, unlike
Excel, ModelCenter is not readily available for most users and
may demand an extra cost to obtain.

The methods developed in this study was applied to the solar
HALE UAV configuration developed in a previous study,
which provide information regarding the detailed design
procedure of the solar HALE UAV and specific design variable
numbers (Joo and Hwang, 2017).

Architecture of the solar aircraft design
framework

The solar aircraft design framework (SADF) is configured in a
way where the user can efficiently conduct multidisciplinary
design and analysis by using the tools that have been already
verified and are being widely used. Figure 1 briefly illustrates
the architecture and data flows of the SADF and Figure 2
shows the participating tools. The SADF conducts the
deterministic optimization using Microsoft EXCEL/Visual
Basic and MATLAB’s fmincon function. In addition, the
SADF uses MATLAB’s optimization algorithms to implement
the reliability-based design optimization (probabilistic
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Figure 1 Organization of the solar aircraft design framework
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Figure 2 Initial screen of the solar aircraft design framework
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optimization) that has been made limitedly available through a
few tools such as ModelCenter.

The open vehicle sketch pad® (OpenVSP, 2012) program is
used in the SADF for visualization of the aircraft configuration
and analysis of the geometry. Another tool that the SADF uses
is XFLR5® (XFLR5, 2016), which is used for aerodynamic
analysis based on the aircraft’s configuration data.

The vehicle sizing and synthesis block calculates the amount
of solar energy at the given flight conditions (latitude,
longitude, and takeoff time) and synthesizes the aerodynamic
and thrust data for the aircraft sizing under the constraints of
energy balance for maintaining flight. This component is
implemented using Excel and visual basic for application
(VBA) and is able to conduct the fundamental sizing of a solar
aircraft independently of the other analytical components.

Contents of solar aircraft design framework

The SADF is capable of conducting deterministic optimization
using only Excel and VBA. The Excel module comprises the
sheets, which are named DoE2, main, location, attenuation
factor, probabilistic analysis, airframe weight, solar power
analysis, drag coefficient profile, aero data2, regenerative fuel
cell (RFC), climb, descent and mission profile. These sheets
conduct individual analysis and the main sheet connects them
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Figure 3 Program architecture and relationship among the component
sheet
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for synthesis as shown in Figure 3. The main sheet takes the
design parameter inputs and provides them to the drag
coefficient profile sheet where the aerodynamic coefficients are
calculated. Using the calculated aerodynamic coefficients and
the other inputs, such as the airfield location, the flight date
and the PV cell efficiency, the solar power analysis sheet
determines the amount of solar energy that can be used for
24 h. Finally, the calculated solar energy is fed back into the
main sheet, which conducts optimization for the minimum
weight of the aircraft under the constraints of the power
margin, nighttime energy margin and lift coefficient (Cy)
margin.

Main sheet

The main sheet takes the user input for the Solar-Powered
HALE aircraft design parameters and provides the optimized
design results. Figure 4 shows a screen capture of the main
sheet and Table I shows the configuration parameters, which
the main sheet presents.

The design variables show the wingspan, aspect ratio, wing
area and the amount of fuel cell energy available of the solar-
powered HALE aircraft. The user provides the initial values of
the aspect ratio and wing area and starts the optimization by
pressing the deterministic optimization button. This button is
an implementation of VBA that drives the optimization solver
in Excel.

Next, the constraints part shows the current values of the
constraint conditions, i.e. the power margin, the daytime and
nighttime energies and the Cruise C; margin. These values are
expected to be greater than zero to satisfy the constraints.

Finally, the weight breakdown part retrieves the component
weights from the solar power analysis sheet. The displayed
values are the set of optimum component weights that the
optimization yields the specified
constraints. The procedural flow associated with the main sheet
is illustrated in Figure 5.

deterministic under

Drag coefficient sheet

The drag coefficient sheet calculates the aerodynamic drag
coefficients based on the specified design variables and the
flight conditions. In the early phase of this study, the Cp i
calculation used the quadratic surrogate equation of the C; as
shown in equation (1):
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Figure 4 Main sheet
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Table I Design variables, design parameters, component technology factors, constraints and weight breakdown in the main sheet

Current Feasibility
Design variables Constraints value criterion
Wing span 32.86 m Power margin 0.000000 >0
Aspect ratio 24.00 - Energy margin 0.622854 >0
Wing area 45.00 m? Night time energy margin 0.000000 >0
Power available 0.87 kw Cruise C, margin 0.641136 >0
Fuel cell energy available 10.64 kWh
Cruise speed 10.66 m/s
Empty weight 76.2 kg
Design parameters Design parameters
Total weight 165.06 kg Solar cells 224 kg
Solar cell fill factor(S¢) 0.828 Motor + propeller 3.9 kg
Payload power (Ppl) 360 w RFC system 22.6 kg
Payload mass 40 kg Avionics 0.0 kg
Avionics system mass 0 kg Payload 40.0 kg
Maximum allowable C, @ Cruise 1.5 -
Component technology factor
Solar cell efficiency 0.19 - RFC specific energy 470 Wh/kg
Solar cell-specific mass 0.6 kg/m? Fuel cell efficiency 0.6 -
Propeller efficiency @ Cruise 0.83 - Electrolyzer efficiency 0.7 -
Electric motor/prop specific power 0.0443 Round trip efficiency 0.42
Electric motor efficiency 0.9 Airframe weight adjustment factor 1

Notes: Airframe weight calculation method 1: Heliplat; 2: Calibrated regression; 3: HPA (Human powered aircraft); 4: Regression method 2; and 5: Stender

CD,wing - I<1 (C‘VL)2 +I<2 (CL) + CDAwing,o

1)

where the coefficients K, K; and Cp wing, are expressed as
functions of the wing area, the aspect ratio and the flight

speed:

930

Ky =£(S, 4R, V)

KZ :f(S7 AR7 V)

CD‘wing :f(Sa ARa V)

2
3
4
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Figure 5 Modulus connected to the main sheet
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These functions are obtained via regression using the JMP, a
specialized commercial tool (JMP, 2014). However, since
this surrogate model is tailored to a specified altitude, it
should be rebuilt when the analysis accounts for other
altitudes. This means that all of the aerodynamic coefficients
need to be obtained through a significant amount of XFLR5
executions, followed by the regression using the JMP.
XFLR5 tends to underestimate the drag force due to viscous
effects. A higher-fidelity method could be used to provide
more accurate results, but would require considerably more
time and resources. XFLLR5 may not be the most accurate
tool available, but can help save time.

Volume 91 - Number 7 - 2019 - 927-937

To gain the benefit of using the surrogate model without the
impractical process of rebuilding the model, this study uses a new
approach to construct the surrogate model. The new surrogate
model consists of functions of the Reynolds number and aspect
ratio and covers wide ranges of altitudes, speeds, wing areas and
wing slenderness ratios. As the model is constructed using only
two variables, the regression can be performed easily and quickly,
even without the use of specialized commercial tools such as
JMP. Furthermore, the new surrogate model consists of a single
formula that encompasses a wide range of wing areas. Therefore,
it eliminates the possibility of inconsistency and errors that the set
of multiple formulas generally experiences. The new surrogate
model calculates the induced drag as a quadratic function of the
Cp, with the induced drag coefficient (K), which is calculated
using the wing aspect ratio.

Solar power analysis sheet

The solar power analysis sheet determines the possibility of
maintaining flight through the energy balance between the
available energy from the PV cells and the required energy for
daily flight. Given a specific date of the year and the latitude and
longitude of a specific location, the power generated by the PV
cells for 24 h is calculated. Based on the power available, the
program determines the wing loading and feasibility for flight,

Figure 6 Flight condition and propulsion system of the solar power analysis sheet
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Figure 7 Power calculation in solar power analysis sheet
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Figure 8 Solar power per unit area (left) and total power profile (right)
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followed by the gross weight of the aircraft as shown in Figure 6.
The user selects the flight location from the 30 representative
airfields in South Korea and enters the flight date for the solar
energy calculation. Once the Excel VLOOKUP function
retrieves the selected data, the system automatically enters the
latitude, longitude and the Linke turbidity.

The daily solar power and energy are calculated and
visualized from 0:00 to 24:00 at intervals of 0.1h. The daily
power is calculated using the equations and solar energy tables
that cover the altitudes of 0-21 km. The fuel cell output power,
which is mainly used for nighttime, equals the difference
between the power required and solar power available. The fuel
cell does not generate power when the amount of solar power
exceeds the power required for flight. The daily energy storage
of the fuel cell equals E, uiap0> Which is a parameter for weight
estimation of the fuel cell.

Following the previously addressed theories and formulas,
Figures 7 and 8 show the profiles of the solar power, P, the
power required for payload, P,uy0.s the power required for
flight, P,.,, the total power required for flight, P, and the fuel
cell output, Prc,

The weight part estimates the component weights, which
include structure, the payload and the avionics and the hybrid
propulsion system of the PV cells, the motor, the propellers and
fuel cell. Table II presents the weight part.

In the surrogate model improvement process, the Ks, the
parasite drag coefficients and the total drag coefficients are
calculated in linkage with the drag coefficient sheet. The sheet
provides a comparison of the estimation through the surrogate
model and the actual calculation of the aerodynamic model.
Figure 9 illustrates the architecture of the calculation flow that
is associated with the solar power analysis sheet.

Location and turbidity sheet

The location and turbidity sheet is used to enter the information
on the latitudes and longitudes for the given flight locations and
the atmospheric turbidity depending on atmospheric conditions.
The information on atmospheric turbidity is as shown in Table III.

Attenuation factor sheet

Figure 10 presents the solar attenuation factor along with the
flight and solar altitudes.
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Table Il Weight part in solar power analysis sheet

Weight
Structural W, 1,236.5 N
Payload W, 49.1 N
Avionics Avionics 98.1 N
Solar cell Wool 3193 N
Motor Winotor 122.1 N
Propeller Worop 0.0 N
Fuel cell RFC system 618.4 N
H, Whyd (Required) 134 N
0, Woxy 106.9 N
H, tank N
N
Total W, 2,443.4 N
Structural Empty weight 126.0 kg
Payload Payload 5.0 kg
Avionics Avionics 10.0 kg
Complex propulsion system  Solar cells 32.6 kg
Motor + propeller 12.5 kg
Fuel cell system 63.0 kg
Total Total weight  249.1

Airframe weight sheet

The airframe weight sheet provides the weight estimation
equations, which the main sheet refers to. The identification
numbers 1-4 are assigned to the equations from Heliplat
(Romeo, 204), the structural weight of human-powered
aircraft, the regressions equations and equations from
Stender (Noth, 2008). The Heliplat equations yield better
estimations for the twin boom types and heavy aircraft of the
1,000 kg class. The human powered aircraft equations are
known to suit the general glider configurations of the 150 kg
class, to which the target aircraft of this study belongs.
However, this study uses the Stender method that yields
conservative results.

DOE_2 sheet

The main sheet determines the optimum combination of
design variables that satisfies the three constraint
conditions, namely, the power margin, nighttime energy
margin and cruise C; margin. In contrast, the optimum
combinations for many different flight locations and dates
can be found at once on the DOE_2 sheet, which is shown
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Figure 9 Solar power analysis diagram
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Table 11l Atmospheric turbidity conditions

Whether condition No Tk

Pure sky 1 1.000
Very clear sky 2 0.947
Clear sky 3 0.833
Summer with water vapor 5 0.649
Polluted urban industrial 7 0.565

Figure 10 Altitude vs attenuation factor with solar altitude angles
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in Table IV. The DOE_2 sheet provides the outputs that
correspond to the user’s input sets of ten design variables,
namely: flight date, wing area, aspect ratio, PV cell
efficiency, PV cell-specific mass, RFC specific energy, fuel
cell efficiency, airframe weight adjustment factor, payload
and payload power. The outputs are cruise speed, RFC,
power margin, energy margin, nighttime energy margin,
cruise C; margin, empty weight, solar cell/motor/propeller/
RFC system/avionics/payload weight, total weight,
required energy, solar energy, lift to drag ratio, required
flight power, Cjy, drag coefficient and vertical tail/
horizontal tail area.

Climb flight sheet

The climb flight sheet provides the mission analysis of the
climb from ground level to the specified mission altitude.
This sheet design is based on the cruise analysis of the solar
power analysis sheet with an addition of elements for the
climb that relies only on solar energy. The program
considers two climb scenarios: the initial climb from the
ground to the mission altitude, i.e. 0-18 km and the climb
from the nighttime cruise altitude to the daytime cruise
altitude, i.e. 11-18 km. In addition, through the calculated
data, the user can investigate the time during, which the
aircraft can climb, the available solar energy and power
required according to altitude and the total time required to
complete the climb as shown in Figure 11.
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Figure 11 Climb flight sheet
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Descent flight sheet

The descent flight sheet provides a similar approach to the climb
calculations, except that it uses the fuel cell depending on the
descent rate. The target descent rate is assumed constant and is
determined as the altitude difference divided by the predefined
total time. As the descent does not consume the solar power, the
negative energy balance at a given altitude yields an altitude drop
or deceleration. The piecewise descent rate is calculated using the
altitude drop for each time step and the excessive descent rate
from the target value is compensated by the power from the fuel
cell. The descent flight sheet is shown in Figure 12.

Figure 12 Descent flight sheet

Mission profile sheet

The mission profile sheet provides a comprehensive
comparison between the fuel cell energy consumption and
available solar energy charge in daily mission profiles,
which consist of the climb, cruise and descent. The
aircraft consumes power from the fuel cell when it is in
descent or nighttime cruise at low altitudes. In contrast, it
uses solar power when it is in climb or daytime cruise at
high altitudes. The user can also investigate the energy
and speed with the total descent time. The calculation
starts as the user enters the input variables, such as the

Lift
Descent_Run Time Start End Start End Reymolds Stall | Minimum | Coefficien
Time Time | Interval | Speed | Speed Attitude Altitude Air Density Temperature | Viscosity | number | Speed | Speed t
T T-Tr del t Nl V2 H1 H2 p(rho) mu Re# V_stall | V_min CL:
hour s s m/s m/s m \ ft m slug/ft3 kg/m3 K m/s mls
17.00 61,200 100 2634 26.26 18,000 59,055.12 17,961 0.000234 0.120690 216.67 1.482E-05 3.003E+05 21.95 26.34 1.04167
Weight 160 kg 17.03 61,300 100 2626 26.18 17,961 58,927.53 17,922 0.000236 0.121432 216.67 1.482E-05 3.012E+05 2189 2626  1.04167
Wing Area 35.98 m”2 17.06 61,400 100 26.18 26.10 17,922 58,799.94 17,883 0.000237 0.122179 21667 1482E-05 3021E+05 2182 2618 104167
Solar Cell Area 26.985 m”2 17.08 61,500 100  26.10 26.02 17,883 58,672.36 17,844 0.000239 0.122931 216.67 1.482E-05 3.031E+05 21.75 26.10  1.04167
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Figure 13 Result graphs of mission profile sheet
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descent time and climb start time and clicks the mission
flight button. The mission profile result plots are shown in
Figure 13.

Conclusion

This study presented a design framework for the initial sizing
process of a HALE solar UAV. This design framework can be
readily available for most computers as it only uses publicly
available programs, i.e. OpenVSP and XFLR5 and Excel and
VBA. The user interface of the framework is implemented
using Excel, which is user-friendly and can be easily revised on
demand. The user interface of the framework shows only the
desired outputs on the sheets while the functions and
algorithms run behind through Excel and VB environment.

Furthermore, as traditional aircraft sizing methods cannot be
applied to a solar aircraft, an adequate sizing approach was
developed and implemented. This framework provides an
understanding of the effects of the essential components on the
weight. Moreover, it enables an easy weight sizing of various
solar aircraft to increase PV cell efficiency and fuel cell round
trip efficiency. Another benefit of this framework is the
aerodynamic surrogate models that enable an optimum design
without repeated invocations of the aerodynamic analysis tools
for changes in design variables and flight conditions. The
framework also provides an analysis of the daily mission profile,
which consists of the climb, cruise and descent, for specified
configurations and conditions.

In addition, the deterministic optimization, which runs with
the visual basic based algorithms, yields the minimum weight of
the aircraft that satisfies the constraints. In contrast, the
stochastic optimization, which retrieves the MATLAB
functions, enables optimized sizing under the uncertainties of
the design variables. In summary, this framework is useful and
efficiently used in the design of the HALE solar UAV.

In this research, we used low-fidelity tools such as XFLR5
and OpenVSP so that the drag should be corrected by
comparing with the real accurate wind tunnel test data. Also, in
this research, the Stender method was used for the weight
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prediction, which usually overestimate the total structural
weight. The new weight estimation method should be used
after comparing the weight with the actual solar HALE UAV.
Hence, higher fidelity methods for drag calculation and weight
estimation should be studied to yield a considerably more
optimized design with far less error.
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