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Abstract
Purpose – Performing accurate numerical simulations of electrical drives, the precise knowledge of the local
magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat
treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the
assumption of homogenized global material parameters is no longer feasible. This paper aims to present the
general methodology and two different solution strategies for determining the local magnetic material
properties using reference and simulation data.
Design/methodology/approach – The general methodology combines methods based on measurement,
numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to
characterize electrical steel sheets locally. Based on the measurement data and results from the finite element
simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi
Newton method (QNM) using Broyden’s update formula to approximate the Jacobian and the second is an
adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example
with a linear material model is considered.
Findings – The QNM and the adjoint method show similar convergence behavior for two different cutting-
edge effects. Furthermore, considering a priori information improved the convergence rate. However, no
impact on the stability and the remaining error is observed.
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Originality/value – The presented methodology enables a fast and simple determination of the local
magnetic material properties of electrical steel sheets without the need for a large number of samples or
special preparation procedures.

Keywords Finite element method, Inverse problems, Soft magnetic material, Numerical analysis

Paper type Research paper

1. Introduction
The local magnetic properties of electrical steel sheets are critical for predicting the
performance in applications such as transformers, motors and generators (Li et al., 2017).
These properties include parameters like magnetic permeability, saturation magnetization
and hysteresis characteristics, which vary locally across the material due to the influence
of different manufacturing processes. In particular, cutting techniques are an essential
part in the manufacturing chain to create the shape and geometry of the electrical steel
sheets needed in different applications. As a result of these processes, changes in the
microstructure and residual stresses at the cutting edges may occur, leading to a
deterioration of the magnetic material properties of the electrical sheets. The extent of this
deterioration at the cutting edge depends on the cutting process, e.g. punching, laser cutting
or water-jet cutting, and the cutting parameters, e.g. laser intensity, blade sharpness or
cutting speed (Schoppa et al., 2000; Hofmann et al., 2015; Sundaria et al., 2019).

Accurate and efficient determination of the local properties is a challenging task and
remains a subject of active exploration within the scientific community. One widely used
approach for assessing the impact of cutting edges involves the examination of the ratio
between the cutting length and the overall bulk material. This is accomplished by dividing
an electrical steel sheet into multiple narrower strips, such that the combined width of these
strips, when placed side by side, mirrors the dimensions of the original sheet. Modifying the
strip width yields distinct combinations of cutting length to bulk material ratio, which are
subsequently evaluated using a single sheet tester (SST) or an Epstein frame (Sundaria et al.,
2020; Bali et al., 2017).

A destructive and a nondestructive method for locally measuring the influence of cutting
edges are presented in earlier studies (Nakata et al., 1992; Loisos and Moses, 2005; Lewis
et al., 2018; Gmyrek, 2016). The destructive method includes the method of placing search
coils near the cutting edge by drilling holes in sheets to measure the magnetic flux. The
nondestructive method uses the needle probe method.

Our approach involves the integration of various scientificmethodologies to comprehensively
investigate the influence of cutting edges on the magnetic material properties. Therefore, a
combination of measurement, numerical simulation and inverse modeling techniques are used.
To gather measurement data, a sensor-actuator (SA) system is used to magnetize electrical steel
sheets locally and measure the magnetic field above the sample. In addition to experimental
measurements, numerical data are generated by solving the magneto-static problem employing
the finite element (FE) method. Therefore, an appropriate model for the SA system and electrical
steel sheets is used. The combination of measured and numerical data forms the basis for
applying inverse schemes to determine the parameters of the defined material model, including
the degradation of the properties due to cutting.

In this work, the ideas of Gschwentner et al. (2023) are taken up and extended by
introducing the adjoint method for solving the inverse problem. In Section 2, a brief
summary of the sensor-actuator system as well as the electrical sheet model is given. The
inverse problem can be written as a minimization problem, containing the error term
between the measured and simulated data as well as a regularization term. The
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minimization problem is then solved via a quasi Newton method (QNM) using Broyden’s
update formula to approximate the Jacobian and via the adjoint method. A detailed
description of the methods is presented in Section 3. In Section 4, both methods are tested for
differently pronounced cutting edge effects. The goal of this work is to compare the QNM
and the adjoint method regarding accuracy and efficiency.

2. Sensor-actuator system
The sensor-actuator system depicted in Figure 1 represents an assembly of stacked iron
sheets, which is subjected to excitation from two coils. This system possesses the capability
to magnetize electrical steel sheets locally while concurrently measuring the local magnetic
flux density. The measurement process involves employing a sensor array equipped with S
Hall and/or GMR sensors, which can accurately detect the x�, y� and z� components of the
magnetic field above the electrical steel sheets. Two electrical steel sheets, denoted as
Sample 1 and Sample 2, are placed in proximity along the cutting edge. This arrangement is
necessary to ensure magnetization of the cutting edges with the sensor-actuator system and
thus achieve a corresponding sensitivity for the inverse scheme (Gschwentner et al., 2023).
Under the assumption that both samples originate from the same batch and identical cutting
process parameters are maintained, it is valid to consider symmetrical and identical material
behavior. To gather measurement data, Sample 1 and Sample 2 are measured at various
positions along the x-direction with P being the number of positions. Notably, due to the
assumed large variations in material behavior near the cutting edges, a higher density of
measurement positions is concentrated in this region compared to the bulk material.
Furthermore, to maintain consistency, the sheets are demagnetized between each
measurement position to eliminate any residual magnetism, which is an essential
assumption for subsequent numerical simulations. The resulting data set contains
measurements for the three magnetic field components at each sensor and measurement

Figure 1.
Quasi-2D sensor-

actuator model with
two electrical steel
sheets, denoted as

Sample 1 and
Sample 2
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position, denoted as Bmeas
x;i;j , B

meas
y;i;j and Bmeas

z;i;j with i ¼ 1, 2,...., S the sensor positions and
j ¼ 1, 2,....., P the measurement positions. Subsequently, based on this data set, the
magnetic field density amplitude is computed using the Euclidean norm, represented

as jjBmeas
i;j jj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bmeas
x;i;j

� �2 þ Bmeas
y;i;j

� �2 þ Bmeas
z;i;j

� �2q
, leading to the final measurement data

Bmeas ¼ Bmeas
1;1 ;Bmeas

2;1 ; . . . ;Bmeas
S;P

� �T .
The degradation of material characteristics due to cutting becomes noticeable within a

narrow span of millimeters near the cutting edges. The extent of this degradation depends
on the particular cutting technique and the parameters used in the cutting process. To
accurately model the significant material changes that occur in this region during the
simulations, each electrical steel sheet is divided into M nonequidistant subdomains,
denoted by Xm. The size of these subdomains is significantly smaller in the immediate
vicinity of the cutting edges compared to the bulk material (Figure 2).

In the numerical simulation, the electrical steel sheets are described by a material model,
which can encompass linear, nonlinear or hysteretic characteristics. The specific material
model involves a variable number of parameters that must be determined to align the model’s
behavior with the actual material properties. In this work, a linear material model v ¼ vr v0,
with vr the relative reluctivity and v0 the reluctivity of vacuum, is assumed. To take the
influence of cutting edges into account, the chosen linear material model is assigned to each
subdomain, allowing independent selection of model parameters for each subdomain.
Consequently, the searched-for parameter vector can be expressed as p ¼ [vr,1, vr,2,. . ., vr,M]

T.
The advantage of this approach is that no adaptation of the material model is necessary to
take into account factors influencing the magnetic material behavior, e.g. residual stresses,
microstructure, etc., as these are inherently included in the model parameter for each
subdomain. Furthermore, this approach can be extended to applications that also lead to a
change inmagnetic material behavior, e.g. forming or heat-treatment of electrical steel sheets.

3. Inverse methods
The inverse scheme calculates the searched-for parameter vector p based on the measured
magnetic flux densities Bmeas and the simulated magnetic flux densities B sim. Therefore, a
nonlinear least squares minimization problem has to be solved to find the optimal parameter
popt, such that the error norm between Bmeas and B sim is minimized. Due to the inevitable
measurement noise in the data, difficulties in solving the nonlinear least squares problem
occur. More precisely, small perturbations in the measurement data have a pronounced
negative effect on the computed parameters and cause the solution strategy to diverge. From

Figure 2.
Electrical steel sheet
discretization into M
subdomainsXmwith
m¼ 1,2,. . .,M (color
coded), each
subdomain assigned
with reluctivity vm.
xCE is the affected
area due to cutting
andDxm is the length
of the subdomains
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a mathematical point of view, this can be stated as an ill-posed problem. To overcome this
problem, a Tikhonov regularization (Tikhonov et al., 1995) is applied to ensure convergence.
In doing so, the minimization problem reads as follows:

popt ¼ argminp2Rn

XS
i¼1

XP
j¼1

1
2
jjF i xj;u pð Þ;pð Þjj22 þ

1
2
ajjp � prefjj22

s:t: A u pð Þ;pð Þ ¼ r � �r� u � J ¼ 0 ;

(1)

with F i xj;u pð Þ;pð Þ ¼ B sim
i xj;pð Þ � Bmeas

i xjð Þ, P the number of measurement positions,

S the number of sensors position, B sim
i xj;pð Þ the simulated magnetic flux density, Bmeas

i xjð Þ
the measured magnetic flux density, a the regularization parameter, p ¼ [vr,1, vr,2,. . ., vr,M]

T

the relative magnetic reluctivities in each subdomain of the steel sheet, u the magnetic vector
potential and J the electric current density. Finding the optimal parameter popt of the
minimization problem, equation (1) is solved iteratively, using a QNM with Broyden’s update
formula (see Section 3.1) and an adjoint method (see Section 3.2).

3.1 Quasi newton method with Broyden’s update formula
The first method is based on quasi Newton method with Broyden’s update formula (Nocedal
andWright, 2006). In doing so, equation (1) can be written as follows:

BT
k Bk þ akI

� �
q ¼ �BT

k F � ak pk � pref
� �

(2)

pkþ1 ¼ pk þ lq ; (3)

with I the identity matrix, q the search direction, pref the a priori information, l the line
search parameter (determined by Armijo rule) and B the approximated Jacobian using
Broyden’s update formula:

Bk ¼ Bk�1 þ 1
sTk sk

F pkð Þ � F pk�1ð Þ � Bk�1sk
� �

sTk (4)

sk ¼ pk � pk�1 : (5)

For the initialization of the Jacobian Binit, the central difference method is used. To start at
iteration step k ¼ 0 with a good approximation, the finite difference method is applied to
compute the Jacobian:

Binit ¼ Bij
� � ¼

DBsim
1;1

Dp1

DBsim
1;1

Dp2
� � � DBsim

1;1

DpM
DBsim

2;1

Dp1

DBsim
2;1

Dp2
� � � DBsim

2;1

DpM
..
. ..

. . .
. ..

.

DBsim
S;P

Dp1

DBsim
S;P

Dp2
� � � DBsim

S;P

DpM

2
6666666666664

3
7777777777775
; (6)
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with DBsim
i;j ¼ Bsim

i;j pþð Þ � Bsim
i;j p�ð Þ and Dpm ¼ pþm � p�m, whereby pþm ¼ �r;m 1þ eð Þ and

p�m ¼ �r;m 1� eð Þ.

3.2 Adjoint method
The adjoint method enables the direct computation of the gradients of our parameter vector
p (Hinze et al., 2009). In doing so, we rewrite equation (1) as follows:

min
p2Rn

J u pð Þ;pð Þ s:t:A u pð Þ;pð Þ ¼ 0 : (7)

with the functional J being:

J u pð Þ;pð Þ ¼
XS
i¼1

XP
j¼1

1
2
jjF i xj;pð Þjj22 þ

1
2
ajjp � prefjj22 : (8)

In a next step, we introduce the Lagrange functionL:
LL u pð Þ;p; k� � ¼ J u pð Þ;pð Þ þ kT A u pð Þ;pð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

¼ J u pð Þ;pð Þ ; (9)

which is totally equal to our functional J, as we just added zero. In equation (9), k denotes the
vector of Lagrange multipliers. In a next step, we compute the gradient of the Lagrange
function with respect to the parameters p resulting in the following:

dL
dp

¼ ∂J
∂u

∂u
∂p

þ ∂J
∂p

þ ∂kT

∂p
A|{z}
¼0

þkT
∂A
∂u

∂u
∂p

þ ∂A
∂p


 �
: (10)

Now, equation (10) can be rearranged as follows:

dJ
dp

¼ @L
@p

¼ @J
@u

þ kT
@A
@u


 �
@u
@p

þ kT
@A
@p

þ @J
@p

: (11)

When we now set the terms in the parenthesis to zero, @u/@p is no longer needed in the
computation of the gradient of the functional J with respect to the parameters p. In doing so,
we obtain the following equation for the vector of Lagrange multipliers:

@A
@u


 �T

k ¼ � @J
@u


 �T

; (12)

which is also named adjoint equation. Finally, we arrive at the following:

dJ
dp

¼ kT
@A
@p

þ @J
@p

: (13)

The solution of the magnetostatic field is performed by the FEmethod, which discretizes the
weak formulation via the Galerkin method. As our operatorA is self-adjoint, the weak form
of the left-hand side of (12) reads as follows:
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ð
X

�r� v � r � k dX ; n � k ¼ 0 on @X (14)

with the test function v. For the right-hand side of equation (12), we explore the Gateux –
derivative and obtain for each position j of the sensor actuator system:

lim
«!0

1
«

J u þ «v;pð Þ � J u;pð Þ� � ¼ lim
«!0

1
2«

XS
i¼1

���� Bsim
i xj;pð Þ þ «r� v � Bmeas

i xjð Þ
����2

  

�
���� Bsim

i xj;pð Þ � Bmeas
i xjð Þ

����2
 !

¼
XS
i¼1

Bsim
i xj;pð Þ � Bmeas

i xjð Þ
� �

� r � v : (15)

As each sensor has a finite volume, we evaluate equation (15) via an integral over each
sensor volume Xi, and arrive at the weak form of the adjoint equation for each fixed sensor
actuator position j:ð

X

�r� v � r � k dX ¼
ð
Xi

Bsim
i xj;pð Þ � Bmeas

i xjð Þ
� �

� r � v dX ; (16)

which is also solved via the Galerkin FE formulation. Please note that the adjoint
formulation results in the same system matrix as the forward simulation. Therefore, using a
direct solver, the conjugation for the adjoint solution is highly efficient. To obtain the
gradients of the parameter vector p, the term @A/@p is needed [see equation (13)], which
computes by the following: ð

X

@�i
@�j

r� u � r � k dX ; (17)

where @vi/@vj is one for i¼ j and zero else. Finally, the term @J/@p in equation (13) calculates
according to equation (8) by the following:

@J
@p

¼ a p � pref
� �

: (18)

These results allow the evaluation of equation (13), which is the gradient q for adapting the
material parameter p. The iterative procedure reads as follows:

q ¼ @Jk
@pk

¼ kTk
@Ak

@pk
þ @Jk
@pk

(19)

pkþ1 ¼ pk þ lq ; (20)

with l the line search parameter (determined by Armijo’s role).
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3.2.1 Comparison adjoint method and finite difference. To check the accuracy of the
calculated gradient using the adjoint method, it is compared with the gradient obtained from
using the finite difference method. For the sake of simplicity, only a variation of the
magnetic reluctivity in the subdomain X1 is assumed and the sensor-actuator system is
positioned as shown in Figure 2. The relative error and the resulting gradients are shown in
Table 1.

3.3 Stopping criterion and regularization parameter
As the QNM and the adjoint method are iterative solution strategies, a stopping criterion has
to be defined. In doing so, the following error norm is used:

« ¼ jjBmeas � Bsimjj2;rel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS
i¼1

XP
j¼1

Bmeas
i;j � Bsim

i;j

� �2
XS
i¼1

XP
j¼1

Bsim
i;j

� �2

vuuuuuuuut : (21)

Furthermore, the choice of regularization parameter is crucial for achieving an optimal
solution during the iterative process. If the regularization parameter is set too high, the
solution prioritizes the regularization term, while setting it too low can lead to divergence of
the iterative process. According to the accuracy and resolution of the sensors, an a priori
upper bound b for the error norm is available:

jjBmeas � B exactjj2 # b : (22)

In equation (22), B exact denotes the exact data without noise, and the discrepancy principle
of Morozov (1968) is used. Therefore, starting from an initial regularization parameter ainit,
the regularization parameter is reduced by each iteration step:

ak ¼ ak ainit with a < 1 ; (23)

until the following condition is fulfilled:

jjBmeas � Bsim akð Þjj2 < b : (24)

For all computations, a¼ 0.5 and ainit¼ 1 has been chosen.

Table 1.
Comparison
gradients computed
with adjoint method
qadj and finite
difference qfd

Parameter Value

qadj �7.326 10�11

qfd �7.262 10�11

(qadj� qfd)/qadj 0.874%

Source:Authors’ own creation/work
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4. Comparison of quasi Newton method and adjoint method
For the comparison of the two methods, electrical steel sheets with different cutting-edge
influence are considered. It is assumed that the magnetic material properties decrease
exponentially toward the cutting edge, using the empirical formula (Bali et al., 2014):

�r xð Þ ¼ �globalr 1� 1� gð Þð Þ e �x=dð Þ ; (25)

with vr(x) the relative reluctivity, g the degradation factor, d the degradation skin depth and
�globalr the relative reluctivity of the bulk material. Based on this formula, the initial
reluctivity vinit(x) (initial configuration for the inverse scheme), reference reluctivity vref(x)
(used for the Tikhonov regularization) and exact reluctivity vexact(x) are computed for the
case of small (see Figure 3) and for the case of large (see Figure 4) cutting-edge effect.
The parameters for exact reluctivity vexact(x) were chosen by the authors based on the

Figure 3.
Material distribution
with small cutting-
edge effect for an

electrical steel sheet
(due to symmetry,
only the half of the
sheet is visualized)

Figure 4.
Material distribution
with large cutting-
edge effect for an

electrical steel sheet
(due to symmetry,
only the half of the
sheet is visualized)

Table 2.
Parameters g, d and

�globalr for initial
�initr xð Þ, reference
�refr xð Þ and exact
�exactr xð Þ relative

reluctivity

Small Large
Parameter �initr xð Þ �refr xð Þ �exactr xð Þ �initr xð Þ �refr xð Þ �exactr xð Þ
c 0.8 0.65 0.5 0.5 0.35 0.2
d 0.5 0.75 1 1 1.25 1.5
1=�globalr 5000 5000 5000 5000 5000 5000

Source:Authors’ own creation/work

Quasi Newton
method



investigations of Nakata et al. (1992), Bali et al. (2014), Holopainen et al. (2017) and Sundaria
et al. (2020) and should reflect the real material behavior under the influence of cutting
edges. The parameters are listed in Table 2.

In the simulation, each electrical steel sheet is divided into five subregions. The discrete
reluctivities �initi , �refi and �exacti are calculated by integrating the corresponding continuous
curves over the region length (see Table 3, where the reciprocal value is given, which
corresponds to the relative permeability).

The reluctivities (�initr;i , �
ref
r;i and �exactr;i ) for the subdomain i ¼ 5 in both cases are equal.

This is based on the assumption, that the material properties of the bulk material are known
from SST or Epstein measurements. Thus, the parameter vr,5 is excluded from the
optimization procedure and remains constant during the iterative procedure. The
continuous and discrete material distribution for small and large cutting-edge effect are
shown in Figures 3 and 4.

Measuring the magnetic flux density above the steel sheets, Hall sensors (in total seven
sensors) are used, uniformly distributed along the line [(�3,0.4,0),(3,0.4,0)] in mm. In total,
the electrical steel sheets are measured at six different positions, whereby the first
measurement were taken such that sensor s4 (see Figure 1) was directly above the cutting
edge. The additional measurements were performed such that sensor s4 was in the middle of
each subregion.

The measurement data Bmeas are generated artificially by forward simulations solving
the magnetic field for the magneto-static case considering the exact material values.
Furthermore, the generated data are overlaid by a Gaussian white noise N 0;s 2

� �
. For the

sake of completeness, this means that the measurement noise is added to each measured flux
density value for each sensor at each sensor-actuator position. To avoid an inverse crime,
different meshes are used for the generation of the measurement data [Figure 5(a)] and for
the inverse procedure [Figure 5(b)].

Table 3.
Values for discrete
initial �initr;i , reference
�refr;i and exact �

exact
r;i

relative reluctivity

Small Large
Subdomain 1=�initr;i 1=�refr;i 1=�exactr;1 1=�initr;i 1=�refr;i 1=�exactr;i

1 4213 3511 2788 3032 2321 1598
2 4616 4084 3467 3806 3204 2562
3 4884 4593 4169 4523 4149 3701
4 4984 4897 4711 4924 4809 4632
5 5000 5000 5000 5000 5000 5000

Source:Authors’ own creation/work

Figure 5.
Finite element mesh
for (a) generation of
the measurement
data and (b) solving
the inverse problem
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Based on the given data, the convergence behavior for the searched-for parameter vector p
is investigated for the QNM and the adjoint method. In a first step, we demonstrated the
convergence of both methods to the exact solution while analyzing measurement data
without Gaussian white noise. Therefore, we consider the case with large cutting-edge
effects and no a priori information. The outcomes of the QNM and adjoint method are
presented in Figures 6, .

A few remarks pertaining to the results depicted in Figure 6 may be drawn. The
convergence behavior for the QNM exhibits a smoother and faster progression when
compared to the adjoint method. This can be clarified through the following observations.
First, the QNM uses an initialization strategy using the finite difference method for the
Jacobian, which results in a well-defined approximation of the Jacobian. Consequently,
during the iterative process, significant adaptations through Broyden’s update formula are
unnecessary. In addition, the QNM uses information from the second derivative through an
approximation of the Hessian matrix. On the other hand, the adjoint method depends only
on first-order derivative information, similar to an optimization method resembling the
steepest descent approach. It is worth noting that a reduction in the initial regularization
parameter, denoted as ainit, holds the potential to enhance the convergence behavior of the
adjoint method. We therefore direct the reader’s attention to Figure 6(b). Until iteration step

Figure 6.
Convergence of

searched-for
parameter vector p
and residual error «
considering large

cutting-edge effects
and no measurement
noise using (a) QNM

and (b) adjoint
method

Figure 7.
Convergence of

searched-for
parameter vector p
and residual error «
considering large

cutting-edge effects
using (a) QNM and (b)

adjoint method
(measured data

overlaid by Gaussian
white noise and pref

set to zero)
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5, no significant alterations in the parameters are recognizable, which suggests that the
regularization term jjp � prefjj22 exerts a more pronounced influence in the initial iterations
when compared to the error term jjF i xj;pð Þjj22 (see (1)).

To evaluate the performance of the proposed solution strategies under more realistic
conditions, measurement data are perturbed with Gaussian white noise having a standard
deviation of 10%. In the subsequent analysis, we compare the convergence behavior of the
searched-for parameter vector p along with the error norm «, as defined in equation (21).
Furthermore, to evaluate the stability of the optimization procedure, we allow them to run
for 25 iterations. For the sake of completeness, we denote the iteration step at which the
stopping criterion would have been accomplished by a vertical black line in the subsequent
plots.

In a first case, we make no a priori assumptions about the reluctivity and set pref in
equation (1) to zero. The outcomes for both methods under conditions characterized by large
cutting-edge effects and small cutting-edge effects are illustrated in Figures 7 and 8.

As explained previously, the adjoint method does not bring significant improvements
during the first iterations, due to the initial regularization parameter. As the number of
iterations increases, the stability of both methods is observed. In an overall evaluation, the
adjoint method shows slightly reduced errors for both the searched-for parameter p and

Figure 8.
Convergence of
searched-for
parameter vector p
and residual error «
considering small
cutting-edge effects
using (a) QNM and
(b) adjoint method
(measured data
overlaid by Gaussian
white noise and pref

set to zero)

Figure 9.
Convergence of
searched-for
parameter vector p
and residual error «
considering large
cutting-edge effects
using (a) QNM and
(b) adjoint method
(measured data
overlaid by Gaussian
white noise and a
priori information
pref used)
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the error norm «, while the QNM displays a relatively faster convergence with respect to the
iteration steps at which the stopping criterion is satisfied.

The second investigation involves the incorporation of a priori information �refi , detailed
in Table 3. Similarly, both methods and cases are used as in the previous scenario. The
results for the large and small cutting-edge effects are presented in Figures 9 and 10.

For the sake of completeness, the computation times and the total number of iterations
(including all the iteration steps used for the line search) for the QNM and the adjoint
method are listed in Table 4. Despite a similar number of total iterations, the simulation time
of the adjoint method is about two times longer than that of the QNM. This is due to the
currently inefficient implementation of the adjoint method in the finite element solver
openCFS (Kaltenbacher, 2015), where we do not take advantage of the fact that the system
matrix of the forward problem and the adjoint problem is the same. By optimizing the
implementation, a significant improvement in simulation times for the adjoint method can
be expected. It should also be mentioned here that the optimizers currently in use are
implemented by the authors. Using established optimizers has the potential to improve
convergence in general, thus reducing simulation time and the total number of iterations.

Incorporating a priori information produces notable differences. First, there is an
improvement in the iteration step at which the stopping criterion is satisfied. Moreover,
during the first iteration, there is a reduction in the deviation of the searched-for parameter
vector p and the residual error « compared to the results obtained without the inclusion of a

Figure 10.
Convergence of

searched-for
parameter vector p
and residual error «
considering small

cutting-edge effects
using (a) QNM and (b)

adjoint method
(measured data

overlaid by Gaussian
white noise and a
priori information

pref used)

Table 4.
Computation times t
and total number of
iteration itertotal for
the quasi Newton

method and adjoint
method

Quasi Newton Adjoint
Cutting edge pref t [min] itertotal t [min] itertotal

Large Not used 10.2 162 22.1 185
Used 12.4 196 23.6 185

Small Not used 13.4 212 26.2 210
Used 12.0 160 26.4 196

Source:Authors’ own creation/work
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priori information. However, it is noteworthy that taking into account a priori information
does not seem to have a significant effect on the overall stability of the methods, nor does it
significantly affect the residual error at higher iteration steps.

A crucial aspect that deserves discussion concerns the computation of the residual norm
and the implications for the inverse procedure. Evaluating the previous results concerning
the iteration steps at which the stopping criterion is satisfied and the convergence behavior
of the searched-for parameter vector p, it becomes clear that this criterion is mainly satisfied
when the error for larger subdomains, e.g. v4 and v3, is small, while the material error for the
small subdomains, e.g. v2 and v1, has little influence. This behavior can be explained by the
relationship between the change in material parameters and the effect on the magnetic field.
A variation in the material parameter associated with larger subdomains leads to a
pronounced change in the magnetic field, which is detected by more sensors than a variation
of material parameter associated with small subdomains. Consequently, the procedure tends
to optimize the material parameter of large subdomains due to the pronounced change in the
residual norm.

5. Conclusion
In this work, the ideas of Gschwentner et al. (2023) based on a sensor-actuator model
and the QNM using Brodyen’s update formula to locally determine the magnetic
material behavior are taken up. In doing so, a dedicated adjoint method for solving the
inverse problem is introduced and described in detail. Both methods are tested
numerically for different cutting-edge effects, by generating the measurement data
artificially by forward simulations. These generated data are overlaid by a Gaussian
white noise with 10% standard deviation. Overall, both methods show a similar and
fast convergence behavior for the investigated cases. Thereby, the importance of an
a priori knowledge of the expected magnetic reluctivity values has been demonstrated.
The investigation considering a priori information of the expected reluctivity values
resulted in a strongly faster convergence. However, it has to be noted that the two
proposed inverse schemes can also cope with the situation of no a priory knowledge. In
future work, both methods will be extended, such that nonlinear and even hysteretic
material models can be considered and tested with real world measurements.
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