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Abstract
Purpose – The purpose of this paper is to gain a better understanding on how metasurfaces behave, in
terms of currents in each unit cell. A better knowledge of their behavior could lead to an ad-hoc design for
specific applications.

Design/methodology/approach – The methodology used is both theoretical and numerical; it is based
on circuit theory and on an optimization procedure.

Findings – The results show that when the knowledge of the current in each unit cell of a metasurface is
needed, the most common approximations currently used are often not accurate. Furthermore, a procedure for
the termination of a metasurface, with application-driven goals, is given.

Originality/value – This paper investigates the distribution of the currents in a 2D metamaterial realized
with magnetically coupled resonant coils. Different models for the analysis of these structures are illustrated,
and the effects of the approximations they introduce on the current values are shown and discussed.
Furthermore, proper terminations of the resonators on the boundaries have been investigated by
implementing a numerical optimization procedure with the purpose of achieving a uniform distribution of the
resonator currents. The results show that the behavior of a metasurface (in terms of currents in each single
resonator) depends on different properties; as a consequence, their design is not a trivial task and is dependent
on the specific applications they are designed for. A design strategy, with lumped impedance termination, is
here proposed.
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1. Introduction
Metamaterials are a class of artificial materials characterized by peculiar electromagnetic
properties. They are realized with magnetically coupled resonant coils – often called “unit
cells” or “meta-atoms,” arranged in 2D or 3D arrays to form regular lattices. Metamaterials
are widely exploited in the fields of microwaves and optics (Glybovski et al., 2016) and have
been recently considered in wireless power transfer (WPT) systems operating in near-field
regions, where 2D arrays of resonators – sometimes referred as “metasurfaces” – are used to
transmit or receive power, as well as to improve the transmission efficiency of the overall
system (Sandoval et al., 2019; Brizi et al., 2020).

While the analysis of large-lattice metamaterials can be described by resorting to the
theory of magneto-inductive waves (Solymar and Shamonina, 2009), in case of a limited
number of unit cells, this theory may lead to inaccurate results, as shown in this
contribution. A possibility to accurately analyze the metamaterial is to perform a circuit
analysis that allows for evaluating the magnitudes of currents and voltages in each unit cell.

The usefulness of a uniform current distribution in the metasurface has been shown in
different application fields; still referring to WPT systems (hence to specific dimensions and
frequency of operation), in Lazzoni et al. (2023) it is demonstrated that the unit-cell current
uniformity leads to a significantly more homogenous magnetic field distribution, fundamental
to improve theWPT performance in terms of robustness to misalignment.

This paper investigates different approximations in the modelling of the metamaterial, still
preserving a great accuracy. Furthermore, the effect of different characteristic parameters, such as
quality factor of each unit cell, number of the unit cells, termination impedances, is investigated.

In addition to the study mentioned before, a procedure to determine the proper terminations
of the resonators on the boundaries is investigated, with the purpose of levelling the magnitude
of the resonators currents. This specific working conditions can be exploited in practical
systems such as multireceiver WPT systems, where each unit cell is a receiver, or it is part of a
2D arraywhere a pick-up receiving coil can be placed on any of the unit cells of the surface.

2. 2Dmetamaterial surface
The considered metasurface is composed of N �N resonant RLC coils immersed in a linear
medium and arranged to form a square lattice, as represented in Figure 1, where bZTs andbZTc are lumped termination impedances in the edges and in the corners, respectively. In
Barmada et al. (2022), three termination impedances were used, because of the focus was to
work on a 5� 5 surface; in this contribution, the theoretical study is relative to a general
metasurface, and the choice of only two termination impedances is the most logical one,
being less prone to case dependency.

In many applications, the frequency range of operation of the metasurface makes it
possible to express the relation between the currents circulating in the loops by the use of
the well-known Kirchhoff Voltage Law (KVL). As it is common in applications characterized
by the presence of metasurfaces, their performance is commonly in the frequency domain.
For this reason, in this work, only sinusoidal steady-state regime is considered, and all the
voltages and currents are represented by the respective phasors.

The resulting system of equations can be expressed in matrix form as:bV ¼ bZM
bI (1)

where bZM is the impedance matrix of the system, bI is the vector of the phasor currents
flowing in the resonators and bV ¼ 0; 0; . . . ; bV s; . . . ; 0; 0

h i
is the phasor voltage vector withbV s being the voltage supply phasor; throughout the paper the analysis is carried out

supposing excitation in the central resonator. Rigorously, the impedance matrix should
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include the coupling coefficients between all the coils composing the metamaterial (Brizi
et al., 2020; Solymar and Shamonina, 2009) and is defined as:

bZM ¼

bZ 1 jvM12 jvM13 � � � jvM1N

jvM21
bZ 2 jvM23 � � � jvM2N

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.

jvMN1 � � � � � � jvMN N�1ð Þ bZN

2
66666664

3
77777775

(2)

The cell of the lattice in the generic position (m, n) is characterized by its self-impedance:

bZm;n ¼ Rm;n þ j vLm;n � 1
vCm;n

� �
(3)

where Rm,n is the resistance, Lm,n is the self-inductance and Cm,n is the capacitance of the coil.
The value of Cm,n can be obtained either by connecting lumped capacitors to the magnetic coils
or exploiting the coils self-capacitance with a proper design (Baena et al., 2005). In particular, for
low-frequency applications (up to a few GHz), the self-capacitances of the unit cells are too
small and lumped capacitors are required to make the coils resonate at the desired frequency.

Considering all the elements wound in the same direction and coincident current
references for all elements, in planar structures, the magnetic interaction of coplanar-coupled
coils is characterized by a negative mutual inductance.

Figure 1.
Schematic

representation of the
metasurface
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In the majority of applications, metasurfaces are designed to form periodic lattices;
consequently, all coils are identical to each other and positioned such that their mutual
inductance coefficients lead to a symmetric impedance matrix bZM .

The resonators composing the metasurfaces considered in this paper are characterized
by a resistance R¼ 0.012 X, self-inductance L ¼ 0.5mH, whereas a lumped capacitance C ¼
50 nF is connected to make the system resonate at the nominal frequency f0¼ 1MHz.

The specific values of the circuit elements considered in this paper are related to
metasurfaces currently used as prototypes in laboratory tests. In general, the resonator
resistance and self- and mutual inductances depend on the operating frequency due to skin
and proximity effects, and these phenomena emphasize as the frequency increases. However,
when considering resonators made of stranded-wire wound coils, those parameters can be
considered frequency-independent up to a few MHz. In this condition, still considering the
metasurface–unit cells perfectly resonant, it is possible to notice that the resistance and self-
andmutual inductances depend on the system geometry only.

The distribution of the surface currents in 2D metasurfaces is dominated by the resonator
mutual couplings and quality factor Q ¼ v0L/R, whose impact is different depending on the
lattice extension, as will be quantified later.

2.1 Effect of the resonator quality factor on the current distribution
At a fixed frequency, different quality factors lead to different current distributions and this
effect can be particularly evident as the extension of the metasurface increases.

Considering a full impedance matrix bZM (all coils interact), for low-quality factors (i.e.
Q < 100), obtained by increasing the resonator resistance, the resonators laying on the
diagonal of the lattice experience higher currents [see Figure 2(a), showing the current
magnitude of a 51� 51 surface characterized by Q ¼ 40] if compared with the off-diagonal
ones.

In addition, the current gradually decreases from the resonators closer to the power
source toward the boundary ones, which experience a nearly null current amplitude.

Reversely, as Q increases, it is difficult to predict and control the current distribution, as
shown in Figure. 2, relative to the current magnitudes of a 51� 51 surface characterized by
Q ¼ 170 and Q ¼ 260, respectively. Indeed, while the central resonators still experience
higher currents, the current distribution presents maxima and minima spread among all the
lattice unit cells, whose locations are not known a priori. Intuitively, the abovementioned
behavior can be explained considering that the current distribution originates from the fed
resonator (the central one in this case) and spreads to surrounding unit cells, thanks to their
mutual couplings, limited by the resonator resistance. A lower quality factor leads to
stronger attenuation of the currents and, as a limit case, no current flows in the resonators
furthest from the powered one: in this condition, they do not affect the current distribution.
In case of higher quality factors, all the unit cells contribute to the resulting current
distribution.

Accordingly, for a fixed Q, a wider metasurface (i.e. composed by more resonators) is
characterized by resonators on the diagonal with higher current magnitude. This can be
appreciated by comparing the plots of Figure 2, in which the current distribution is shown
for metasurfaces 51� 51 and 101� 101, respectively, whose resonators haveQ¼ 260.

It is therefore clear that the current distribution is influenced by both the number of
resonators and their quality factor.

Based on the previous qualitative analysis, the ratio Q/N can be introduced: given a
metasurface characterized byQ1 andN1, to have a similar attenuation pattern with a surface
of dimension N2, a quality factor Q2 such that Q1/N1 ¼ Q2/N2 is needed. Figure 3 shows the
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Figure 2.
Current distribution

of a metasurface
excited in the central

resonator at the
frequency f0

considering the
interaction between
all coils in case of (a)
51� 51 metasurface

withQ¼ 40; (b)
51� 51 metasurface

withQ¼ 170; (c)
51� 51 metasurface
withQ¼ 260 and (d)

101� 101
metasurface with

Q¼ 260

Figure 3.
Current distribution of
ametasurface excited

in the central resonator
at the frequency f0

considering the
interaction between all

coils in case of
101� 101metasurface

withQ¼ 80
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current distribution of a metasurface with N¼ 101� 101 resonators andQ¼ 80 that can be
compared with Figure 2(a), characterized by the same Q/N ratio; the similarity can be easily
verified.

2.2 Effect of couplings on current distribution
Different models can be adopted to describe the metasurface behavior. Although the most
accurate evaluation of the current distribution can be obtained considering the full impedance
matrix, simplifiedmodels allow a dramatic reduction of the computational effort and also provide
useful theoretical insight considering the analogy with waves. The models are compared
considering 51� 51 metasurface (referred to as “high dimension”) with low Q resonators to
emulate an infinitely extended lattice (as discussed in Subsection 2.1) and a 5� 5 metasurface
(referred to as “low dimension”) with highQ resonators as a case study of practical interest.

The evaluation a metasurface of small size (5� 5, in our case) is due to the fact that in
practical applications (Brizi et al., 2020; Barmada et al., 2022; Ojukwu et al., 2022, the extension
of the metasurface is limited and the unit cells are designed to present highQ to avoid losses; it
is consequently difficult to predict and control the current amplitude distribution.

2.2.1 All couplings between coils (full model). When all the couplings between coils are
considered, the impedance matrix bZM is fully populated and the resulting current distribution
is depicted in Figures 4(a) and 5(a) with zoomed views in Figures 6(a) and 7(a) for 51 � 51
metasurfaces with Q ¼ 25 (low-quality factor) and Q ¼ 170 (high-quality factor), respectively;
in Figures 8(a) and 9(a), a low-dimension lattice is considered, with low and high Q,
respectively. The currents are normalized with respect to the one of the central resonator, which
presents the highest value. Besides the center, the local maximum values for the current are on
the diagonal resonators in case of a high dimension metasurface, and the phenomenon is more
evident for lowQ.

In the 5� 5 metasurface (shown in Figures 8 and 9), the current maxima are also found in
the resonators on the middle of the edges and this effect is more evident for high Q [see
Figure 9(a)]. Moreover, in this case, minima of the amplitude of the current are found in some
resonators on the diagonal. In the case of low Q, the maxima are always experienced by the
resonators on the diagonal.

2.2.2 Nearest-neighbor approximation and adjacent-diagonal couplings. Considering that
the mutual inductance between two coils dramatically decreases as their distance increases, the

Figure 4.
Current distribution
of a 51� 51
metasurface with
Q¼ 25, excited in the
central resonator
considering (a) all
couplings between
coils; (b) the nearest
neighbor
approximation and
adjacent-diagonal
couplings and (c) the
nearest neighbor
approximation
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mutual coupling coefficient between “distant” coils can be neglected. The quantification of
“distant” leads to the definition of different degrees of approximation.

In the nearest neighbor approximation and adjacent-diagonal couplings approach, the
couplings between nonadjacent resonators are neglected, i.e. only the couplings between
adjacent resonators in all (x, y and diagonal) directions is considered; practically speaking,
each resonator is coupled only to the eight nearest resonators. The matrix bZM is, as a
consequence, extremely simplified.

The current distribution is governed by the resonator mutual coupling Madj ¼ �50 nH
along the x and y directions andMdiag¼�8.6 nH along the diagonal directions.

The current distribution obtained with this approximation is shown in Figures 4(b) and 5(b)
with zoomed views in Figures 6(b) and 7(b) for the 51 � 51 metasurfaces with Q ¼ 25 (low-
quality factor) and Q ¼ 170 (high-quality factor), respectively. In Figures 8(b) and 9(b), the
current distribution of the 5� 5metasurface withQ¼ 25 andQ¼ 170 is shown, respectively.

Figure 6.
Current distribution

in the central
resonators (zoomed
view) of a 51� 51
metasurface with

Q¼ 25, excited at its
center considering (a)
all couplings between
coils; (b) the nearest

neighbor
approximation and
adjacent-diagonal

couplings and (c) the
nearest neighbor
approximation

Figure 5.
Current distribution

of a 51� 51
metasurface with

Q¼ 170, excited in
the central resonator

considering (a) all
couplings between
coils; (b) the nearest

neighbor
approximation and
adjacent-diagonal

couplings and (c) the
nearest neighbor
approximation
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For the high and low Q metasurfaces [see Figure 4(b)], the current still distributes along the
diagonals, although this behavior is less pronounced than in the previous case, whereas a
higher Q leads to additional localized maxima and minima [see Figure 5(b)]. In the small
lattice with highQ, the spread between the maxima andminima is emphasized, whereas it is
limited in case of lowQ [see Figures 8(b) and 9(b)].

2.2.3 Nearest-neighbor approximation and magneto-inductive waves. Being Madj >
Mdiag, a further approximation consists in neglecting the coupling between coils along the
diagonal. With this assumption, referred to as “nearest neighbor” approximation, bZM
further simplifies and the distribution of the currents is governed by the resonator-mutual
couplings along the x and y directions of the space only, i.e. each resonator is coupled only to
the nearest four resonators.

With this approximation the currents of resonators lying on the lattice diagonals
markedly present the higher values for both the considered metasurfaces, as it is shown in
Figures 4(c) and 5(c) with zoomed views in Figures 6(c) and 7(c) for metasurfaces with small

Figure 8.
Current distribution
of a 5� 5
metasurface excited
in the central
resonator withQ¼
25, considering (a) all
couplings between
coils; (b) the nearest
neighbor
approximation and
adjacent-diagonal
couplings and (c) the
nearest neighbor
approximation

Figure 7.
Current distribution
in the central
resonators (zoomed
view) of a 51� 51
metasurface with
Q¼ 170, excited at its
centre considering (a)
all couplings between
coils; (b) the
couplings between
adjacent coils in the x,
y and diagonal
directions and (c) the
nearest neighbor
approximation
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(Q ¼ 25) and large (Q ¼ 25) quality factors, respectively. In Figure 8(c), the currents of a
small lattice with lowQ are shown.

Under this approximation, the current distribution can be considered the result of the
propagation of a current wave named “magneto-inductive” wave 0; the current wave
attenuation is proportional to the resistance R of each unit cell and becomes stronger as
the coupling between the resonators weakens.

The formulation is based on the analogy between the two-port networks of transmission
lines andmutual coupled inductors, for which the input and output currents are delayed byp/2
radians (due to the mutual impedance jvM) and attenuated by the coil resistance. Intuitively,
the current wave originates from the coil connected to the power source and, due to the mutual
coupling, it propagates to the other resonators. To complete a 2p rotation, four consecutive
(coupled) resonators are needed. This clearly implies that the wavelength of MI waves is four
times the length of a resonator edge lMIW ¼ 4d. It is crucial to remind that this kind of waves
are defined considering the coupling between adjacent cells only (Shamonina et al., 2002).

A wave-based model allows a clear explanation of the obtained results when the
metasurface emulates an infinite lattice, while it appears inaccurate in the case of small and
weakly attenuated metasurface.

The current distribution can be considered the result of the superposition of forward and
backward current waves, where the latter originate at the boundary of the metasurface.

As it happens in finite traditional waveguides, standing wave patterns can arise, leading
to local maxima and minima of the current (Simonazzi et al., 2022). To appreciate the
propagation of the current wave, backward waves have to be avoided, which is possible if
the waveguide is matched or infinitely long. However, to the best of the authors’ knowledge,
it has not been clarified how to match a 2D lattice. Comparing Figures 6(c) and 7(c) with
Figures 8(c) and 9(c), we can once again notice that the nearest neighbor approximation is
effective for resonators with lowQ, where the attenuation dominates.

3. Termination impedances for uniform current distribution
Being the choice for the termination conditions of a 2D structure not straightforward (Chan
and Stevensy, 2011) and the nearest neighbor approximation as used in Solymar and
Shamonina (2009) not always satisfying for metasurfaces with a limited number of elements,
both a theoretical study and an optimization procedure are proposed.

Figure 9.
Current distribution

of a 5� 5
metasurface excited

in the central
resonator withQ¼
170, considering (a)

all couplings between
coils; (b) the nearest

neighbor
approximation and
adjacent-diagonal

couplings and (c) the
nearest neighbor
approximation
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3.1 Uniform current distribution in 2D lattices
Modeling the system based on the circuit theory clearly requires the KVLs are fulfilled.
Hence, the basic requirements for the currents of magnetic metasurfaces are derived. At
first, it must be noticed that the straightforward enforcement of KVL allows a uniform
phasor current distribution only operating out of resonance, and may require different
tuning and design for the meta-atoms.

LetbI be the phasor current value of the square lattice meta-atoms. The KVL for a generic
meta-atom in the positionmn can be written as:

0 ¼ bZmn
bI mn þ

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

jvMmn;ik
bI jk (4)

where bZmn is the self-impedance of the coil at the position mn and Mmn,ik is the mutual
induction coefficient between coils at the positionsmn and ik.

Assuming the same phasor currentbI for all the resonators, (4) becomes:

bZmn ¼ �jv
XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ik (5)

The right hand side (RHS) term of (5) is imaginary, whereas the left hand side (LHS) term of
(5) is characterized by both a resistive and a reactive part. For this reason, the necessary
condition to have uniform phasor current is Re bZmn ¼ 0

h i
, i.e. a lossless system. This

condition has a physical rationale, since only in a lossless system it is possible to have
nonattenuated currents in all coils.

The same holds when all unit cells are tuned at the same resonant frequency f0 and (5)
reduces to:

Re bZmn

h i
¼ �jv0

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ m

Mmn;ik (6)

which cannot be fulfilled being the LHS term real and the RHS term complex. Equations (5)
and (6) clearly indicate that a lossy lattice with resonant unit cells does not allow a uniform
current distribution.

3.1.1 Lossless and low-loss metasurfaces. Optimized metasurface coils are characterized
by a high-quality factor, resulting in low-loss resonators. As first approximation, it is possible
to neglect the resonator intrinsic resistance and consider a lossless behavior of the metasurface.
Thus, from (5), the reactance of the generic cellXmn that makes the current uniform is:

Xmn ¼ �v

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ik (7)

Considering all cells tuned at the resonant condition, (7) yields Xmn ¼ 0, consequently a
uniform phasor current leads (again) to a violation of the KVL, as it is shown in (8).
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It must be recalled at this point that (5) was obtained from (4) by imposing bI mn ¼bI jk ¼ bI ;8 m; n; j; k: as a consequence. This imposition leads to an impossible solution for lossy
and lossless systems. Besides the trivial solution of (4) where bI ¼ 0 in a 2D uniform square
lattice, (8) is not verified, having all the mutual inductance coefficientsMmn the same sign.

It is then clear that resonant meta-atoms of a lossless square lattice can experience either
the same current magnitudes or the same phases, but not both of them:

0 ¼ �v0

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ik (8)

3.1.2 Nearest neighbor approximation. In the nearest neighbor approximation, it is assumed
that resonators are coupledwith their nearest ones only. In a square lattice, four couplings are
then considered for a generic resonator out of the boundary and are characterized by the
samemutual inductanceM. In general, the condition (5) dramatically simplifies to:

bZmn ¼ �4jvM (9)

which indicates that the overall impedance has to compensate for the induced voltage by
near unit cells. It must be noticed, however, that this condition cannot be anyway satisfied in
case of perfect resonance operation for either lossy or lossless systems.

3.2 Uniform current magnitude distribution in 2D lattices: the use of termination
impedances
In the previous sections, we demonstrated that, under the hypothesis here adopted, a
uniform distribution of the current (magnitude and phase) is not achievable, at least from a
theoretical point of view. In practical applications, considering the tolerances of the lumped
components and the realization of the resonators, distributions that can be considered
“almost uniform”might be achieved, but are strongly case-dependent.

In this section, the authors investigate the possibility of obtaining a uniform current
magnitude in the resonators, neglecting the phase difference.

The phasor current of a generic cell in the position (mn) can be written as:

bI mn ¼ Iejwmn (10)

where the current magnitude I is the same for all the metasurface resonators and wmn is the
phase difference between the phasor current of the mnth resonator and the fed one. Then,
the constraint can be found directly from (4) enforcing (10).

When considering a real behavior of the metasurface, the resistance cannot be neglected
and (4) becomes:

bZmn ¼ � jv
ejwmn

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ikejwik (11)

while in case of perfect resonance operation the generic constraint reduces to:
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Re bZmn

h i
¼ � jv0

ejwmn

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ikejwik (12)

3.2.1 Lossless and low-loss metasurfaces. In case of a lossless metasurface, Re[Zmn¼ 0] and
(11) turns into:

Xmn ¼ � jv
ejwmn

XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ikejwik (13)

which leads, in case of perfect resonance operations of the cells, to:

0 ¼
XN

i ¼ 1
i 6¼ m

XN

k ¼ 1
k 6¼ n

Mmn;ikejwik (14)

The constraint (13) can be achieved with the proper cell tuning and allows the current phase
distribution to be set as desired. However, in case of resonance operations, further
parameters are required to enforce (14), due to the difficulty in controlling the currents
phases. To avoid increasing the cell impedances and losses, it is possible to insert additional
lumped impedances in the boundary resonators, so that the lattice can be terminated. The
termination impedances can be then determined applying KVL. In particular, two different
values are considered for the terminations of the boundary resonators, i.e. one for the corners
and one for the resonators internal to the edges (as in Figure 1).

In general, for a resonator on the upper edge at the position (Nn) of anN�N (terminated)
metasurface, it is possible to write:

0 ¼ jXNn þ bZTs

� �bI Nn þ jv
XN

i ¼ 1
i 6¼ N

XN

k ¼ 1
k 6¼ n

Mmn;ik
bI ik (15)

where bZTs is the termination impedance of the boundary resonator in the lattice edges.
Thus, assuming a uniform current distribution and perfect resonance operation, the
termination impedance value can be found as:

bZTs ¼ � jv
ejwNn

XN

i ¼ 1
i 6¼ N

XN

k ¼ 1
k 6¼ n

Mmn;ikejwik (16)

Considering a resonator in the corner (NN), the KVL can be written as:

0 ¼ jXNN þ bZTc

� �bI NN þ jv
XN

i ¼ 1
i 6¼ N

XN

k ¼ 1
k 6¼ N

Mmn;ik
bI ik (17)
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with bZTc the corner termination impedance defined, in case of perfect resonance operation
and uniform current magnitude, as:

bZTc ¼ � jv
ejwNN

XN

i ¼ 1
i 6¼ N

XN

k ¼ 1
k 6¼ N

Mmn;ikejwik (18)

3.2.2 Nearest-neighbor approximation. The nearest neighbor approximation can lead to
very simple and effective results, still considering the same mutual coupling M. In
particular, it is possible to obtain a uniform current magnitude while resonators operate in
perfect resonance. The so-obtained uniform magnitude is, however, theoretical, and can be
far from the real situation depending on the validity of the nearest neighbor approximation.

Indeed, for a resonator on the corner in the position (NN) the KVL includes only two
mutual terms and the bZTc can be defined as:

bZTc ¼ �jvM
ejwN�1;N þ ejwN ;N�1

ejwNN
(19)

The simple assumption that matches (19) is to consider ejwN�1;N ¼ ejwN ;N�1 ¼ ejwN ;N ¼ ejw thus:

bZTc ¼ �2jvM (20)

Then, for a resonator on the edge, the termination impedance can be found from the KVL
written for a boundary resonator coupled with the NNth one, for which a condition on the
current phase has been already set. Considering a resonator in the position (NN � 1), the
termination impedance bZTs can be found as:

bZTs ¼ �jvM
ejwN;N þ ejwN ;N�2 þ ejwN�1;N�1

ejwN ;N
(21)

The conditions for the phases can be set considering the constraint (21) and the previous
assumption. Under the nearest neighbor approximation, (21) written for the resonator (N �
1,N� 1) becomes:

0 ¼ bZTse
jwN�1;N�1 þ jvM ejwN�1;N þ ejwN ;N�1 þ ejwN�1;N�2 þ ejwN�2;N�1

� �
(22)

It must be noticed that it would be applied to any cell but we need to consider a cell coupled
with the one for which some hypothesis has been already formulated, namely, (NN).

Being ejwN ;N ¼ ejwN�1;N ¼ ejwN;N�1 ¼ ejw to fulfill the constraint (19), which can be applied for
example to the resonator (N� 1,N� 1), it must be ejwN�1;N�2 ¼ ejwN�2;N�1 ¼ �ejw, leading to:

bZTs ¼ �jvM (23)

4. Termination impedances for uniform current distribution: determination
by an optimization procedure
The numerical calculation of the termination impedances for achieving a uniform current
distribution can be addressed as an optimization problem. In particular, the problem
consists in finding the values of bZTs and bZTc that minimize the normalized standard
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deviation sI of the resonator current magnitudes. Formally, it is a single-objective
optimization problem of two complex variables and it can be expressed as:

minbZ Ts;bZ Tc

sI (24)

Thus, the objective function of the problem is the normalized standard deviation sI, which is
defined as:

sI ¼ 1
mI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
k

jbI kj � mI

� �2
vuut (25)

where

mI ¼
1
N

X
k

jbI kj (26)

is the mean value of the resonator current magnitudes. When sI � 0, the correspondent mi
can be considered the value of each resonator current magnitude Ik.

The problem is solved implementing a particle swarm optimization (PSO) algorithm
(Kennedy and Eberhart, 1995), which found the value of the four varying parameters,
namely, the real and imaginary parts of the edge and corner termination impedances. The
calculation is performed considering a sinusoidal input voltage of 1V at the frequency f0.
After a first heuristic evaluation of possible limits for the parameter values, the variation
range of each variable was set to [�10, 10] to leave the algorithm free to operate.

The details about the PSO optimizations are listed in Table 1.
In addition, adaptive inertia is used and the initial position of the particles corresponds to

a uniform density in the search domain.
For all the considered metasurfaces, it is found that the convergence is reached faster if

the full model is used, at the cost of a higher residual sI.
The results are summarized in Table 2, in which the optimum values of bZTs and bZTc

with the correspondent normalized standard deviation sI are reported for metasurfaces with
different number of cells considering the three different system models discussed in Section
2.2. In particular, the normalized current distribution of the 5� 5 terminated metasurface is
shown in Figure 10, which shows a great uniformity in the resonator currents. Overall, the
lower residual values (few percent) of sI are obtained with the nearest neighborhood
approximation, but similar results can be achieved with the 5� 5 metasurface regardless of
the adopted model. As the size of the lattice increases, the uniformity of the resonator
currents is more difficult to be achieved, as the cases of 9� 9 and 21� 21 metasurfaces

Table 1.
PSO parameters

Dimension Full model Adjacent coupling Nearest neighborhood

Swarm size 1,000 1,000 1,000
Iterations 319 417 291
Objective evaluation 320368 420336 292148

Source: Table created by authors
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Table 2.
Termination

impedances and
residual evaluation

Dimension bZTs(X) bZTc(X) sI

Full model
5� 5 �0.32� j 0.12 0.57� j 0.14 0.0061
9� 9 �0.12þ j 0.19 0.43þ j 0.05 0.1926
21� 21 �0.28þ j 0.28 �0.37þ j 0.24 0.1304

Adjacent coupling
5� 5 �0.32� j 0.14 0.58� j 0.14 0.0043
9� 9 �0.12þ j 0.15 0.41þ j 0.06 0.1614
21� 21 �0.28þ j 0.30 �0.42þ j 0.25 0.1120

Nearest Neighborhood approximation
5� 5 �0.02þ j 0.31 �0.01þ j 0.62 0.0001
9� 9 �0.03þ j 0.31 �0.06þ j 0.62 0.0012
21� 21 �0.06þ j 0.33 �0.21þ j 0.49 0.0510

Source: Table created by authors

Figure 10.
Current distribution

of a 5� 5
metasurface excited

in the central
resonator considering

(a) all couplings
between coils; (b) the
couplings between

adjacent coils in the x,
y and diagonal

directions and (c) the
nearest neighborhood

approximation

Figure 11.
Current distribution

of a 5� 5
metasurface excited

in the central
resonator considering

(a) all couplings
between coils and

termination
impedance calculated
by Adjacent coupling
approximation; (b) all

couplings between
coils and termination
impedance calculated
by Nearest Neighbor

approximation
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testify. It can be also noticed that similar values for the terminations are obtained when
considering all the couplings or the adjacent couplings only, while they considerably deviate
with the nearest neighborhood approximation.

The optimal impedanceI (shown in Table 1) found by using Adjacent coupling and
nearest neighborhood approximations have been tested also using the full model, and the
results (for a 5� 5 metasurface) are shown in Figure 11. It is evident that metasurface
simulated by the full model with bZTs and bZTc calculated by using the adjacent coupling
model still gives a constant current (the termination impedances are very similar, as noted
before), whereas the results with bZTs and bZTc calculated by using the nearest neighborhood
couplingmodel leads to worse performances.

Moreover, the real part of the termination impedances, which is interpreted as a
resistance, often results negative. In practical applications, this condition can be met by
means of active devices only, such as OP-AMP-based circuits or thyristors. From our
analysis, we noticed that within the realizations of the applied algorithm, suboptimal results
can be obtained in terms of current’s uniformity, resulting in termination impedances also
having a positive real part, thereby indicating that passive components could be sufficient to
terminate the lattice, at the cost of a lower current uniformity.

5. Conclusions
The nearest neighborhood approximation is usually adopted for the analysis of
metamaterials, but the resulting current distribution is not accurate in case of arrays
characterized by a relatively low number of unit cells. In this contribution, it is shown that at
least the interaction between adjacent resonators should be considered to reduce the error.
Both approximations introduce significant differences with respect to the full model that
accurately represents mutual coupling between all coils. Nevertheless, the simplification
obtained by neglecting the majority of the mutual coefficients leads to sparse matrices and it
can be computationally convenient when high dimension systems are analyzed. However,
their accuracy needs to be further investigated, especially in case of metasurfaces with a
limited number of resonators.

A circuit-based analysis is carried out to obtain a uniform current’s distribution on a
finite size metasurface by the use of proper termination impedances, showing that a closed
formula of limited practical usage can be obtained. Consequently, the uniform current’s
distribution obtained by applying a PSO algorithm has been shown for a test case 5� 5
array of resonators, proving that, with a certain degree of approximation, a very good
uniformity can be obtained. Furthermore, the analysis has been applied to other two array
sizes and the resulting termination impedances are found accordingly.
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