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Abstract

Purpose – The present paper aims to address challenges associated with path planning and obstacle
avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced
A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous
exploration from both the starting and target nodes and improves the efficiency and effectiveness of the
algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids
unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The
simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid
convergence towards an optimal action strategy compared to existing methods.
Design/methodology/approach – The paper adopts a careful design focusing on the development and
evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has
remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of
environmental changes. Its scale further enhances its applicability in large and complex environments, which
means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA*
algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates
the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating
its ability to plan shorter and more stable paths and achieve higher success rates in all environments.
Findings – The paper adopts a careful design focusing on the development and evaluation of the BAEA* for
mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to
dynamically changing environments and ensures robust navigation in the context of environmental changes.
Its scale further enhances its applicability in large and complex environments, whichmeans it has flexibility for
various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-
directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of
the BAEA* algorithm.
Research limitations/implications – The rigorous evaluation of our proposed BAEA* algorithm with the
BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The
BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable
paths and achieve higher success rates in all environments.
Originality/value – The originality of this paper lies in the introduction of the bidirectional adaptive
enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is
characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a
unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target
node. This approach significantly improves efficiency by quickly converging to the best paths and using A*
heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter
and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive
applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments,
not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale
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further increases its versatility by seamlessly applying it to extensive and complex environments, making it a
versatile solution for a wide range of practical applications. The rigorous assessment against established
algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths,
achieving higher success rates in different environments and cementing its importance in complex and
challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the
efficiency, adaptability and applicability of mobile robot path planning methods.

Keywords Mobile robot, Path planning, A* algorithm, Bi-directional adaptive enhanced A* algorithm

(BAEA*)

Paper type Research paper

1. Introduction
To enhance production efficiency, mobile robots are increasingly deployed within industrial
settings. As the utilization of mobile robots continues to expand, the imperative to enhance
their navigational capabilities becomes increasingly apparent. A multitude of research
studies have been conducted in pursuit of refining the autonomous navigation systems of
these robots. Consequently, path planning has emerged as a focal point of research and
development. Path planning methodologies facilitate the movement of mobile robots from
their initial positions to the designated target locations, ensuring collision-free navigation
through complex environments. If a mobile robot cannot traverse an unfamiliar environment
safely, it may result in detrimental consequences, encompassing environmental harm along
with various associated losses such as time and production inefficiencies. Hence, the
incorporation of effective path-planning strategies for mobile robots operating in uncharted
environments holds substantial potential to deliver significant value and influence.

Path planning strategies are contingent upon environmental characteristics, which can be
broadly categorized into three types: known environments [1], partially known environments
[2], and unknown environments [3]. Furthermore, path planning can be categorized into two
primary modes: static and dynamic, contingent on the nature of the obstacles encountered.
Static path planning denotes a scenario in which the spatial configuration of obstacles
remains invariant over time [4], while dynamic path planning pertains to situations where
obstacles can move within the environment over the time [5].

A multitude of algorithms dedicated to path planning have been advanced over the time.
The authors introduced a vast amount of research on fuzzy-logic approaches for collision-free
path planning of manipulator robots, highlighting their effectiveness and advantages over
traditional methods [6]. Amajor drawback of using fuzzy logic for collision avoidance in path
planning is its reliance on human-defined membership functions and fuzzy rules, which can
be subjective and prone to errors in complex environments.

The Particle SwarmOptimization (PSO) algorithm is employed to prevent Robot collisions
with obstacles in path planning, however, while doing so, PSO can get stuck in local optima
and prioritize exploitation over exploration, leading to suboptimal paths and poor
performance in dynamic environments, particularly when avoiding obstacles [7]. An
adaptive ant colony algorithm enhances the optimization of the path planning of indoor
mobile robots [8]. However, the Ant Colony algorithm can struggle with finding the optimal
path around obstacles due to its reliance on pheromones, which can lead to inefficient
exploration and stagnation in complex environments. Bio-inspired neural network are
reported to optimize the robot’s path to efficiently cover the entire hull surface, reducing
energy consumption during maintenance operations [9]. However, to ensure collision-free
paths in complex environments due to the nature of black boxes and the possibility of over-
fitting, it leads to unpredictable behavior and safety concerns. The multi-robot path planning
method leverages reinforcement learning techniques to coordinate the movement of multiple
robots in complex environments, facilitating efficient path planning [10]. However,
employing reinforcement learning for collision avoidance necessitates substantial training

ACI



data and exploration efforts. This can result in potential instability, slow convergence, and
difficulties in adapting to dynamic environments where obstacles may move unexpectedly.
The Reinforcement Learning-BasedGreyWolf Optimizer (RLGWO), proposed in Ref. [11], is a
novel algorithm tailored for addressing path-planning challenges encountered by Unmanned
Aerial Vehicles (UAVs). Thismethod aims to enhance the efficiency and effectiveness of UAV
path planning across diverse environments. However, RLGWO’s dependency on reward
functions for collision avoidance may result in suboptimal paths in complex environments.
This challenge arises from the difficulty in designing comprehensive reward functions that
accurately capture all pertinent factors, potentially causing the optimizer to prioritize
exploration over achieving collision-free paths. The Efficient Q-Learning (EQL) algorithm
introduced in Ref. [12] aims to address the challenges of slow convergence and suboptimal
performance, ensuring the rapid generation of an optimal collision-free path. However, EQL
may prioritize fast convergence over comprehensive exploration, which could result in
neglecting safer but less immediately rewarding paths that effectively avoid collisions with
obstacles. In the field of multi-agent systems, the proposedmodel [13] uses flexible Q-learning
techniques to navigate decentralized multi-agent robots within continuous state spaces.
Despite its potential, the approach faces challenges related to the overhead of communication
and scalability as the number of agents increases. The continuous exchange of information
required to update the Q-table of agents may constrain system resources, resulting in
performance gaps and constraints on the supervision of large-scale multi-agent systems.
Unmanned Aerial Vehicles (UAVs) were proposed for the detection of aquaculture cages,
with Q-learning and SARSA used to enhance energy efficiency and flight safety [14].
However, the study highlighted deficiencies, notably the lack of energy optimization
strategies and quantitative indicators. The Improved Velocity Potential Field (IVPF)
algorithm is introduced for tracking robot arms in medical scenarios, enhancing obstacle
avoidance and ensuring safety for both human operators and robot arms [15]. However, the
study lacks extensive validation in real-world medical environments and may benefit from
further research into alternative trajectory planning approaches for a comprehensive
evaluation. Neural network models and sophisticated algorithms were used to improve the
planning of paths and obstacle avoidance for clean robots operating in dynamic
environments [16]. Nevertheless, the research acknowledges the need for additional
validation in different realistic scenarios and highlights potential challenges associated
with the integration of neural network models into robotic systems. Reinforcement learning
(RL)-based techniques for dynamic obstacle avoidance and path planning are widely used
[17]. Nonetheless, limited validation under diverse scenarios may limit the generality of these
findings.

The Bi-directional adaptive A* algorithm (BAA*) introduced in Ref. [18] for path planning
of unmanned aerial vehicles (UAVs) in complex environments is based on the A* algorithm
and integrates both an adaptive step strategy and an adaptive weight strategy to efficiently
compute optimal paths for large-scale Unmanned Aerial Vehicles (UAVs) while considering
multiple constraints. The adaptive step strategy dynamically modifies the step size of the A*
algorithm by assessing the local environment around the current node, enhancing
convergence speed. Meanwhile, the adaptive weight strategy aims to strike a balance
between the convergence rate and the quality of the generated path during the planning
process.

Our approach draws inspiration from the BAA* algorithm outlined in Ref. [18], yet it is
essential to underscore the substantial divergences and novelties inherent in our proposed
Bi-directional adaptive Enhanced A* algorithm (BAEA*) in comparison to Ref. [18]. The
paramount distinction between our BAEA* and BAA* [18], which bears the greatest
significance, lies in our novel proposition about the computation of gobs(N). This parameter is
pivotal as it quantifies the cost associated with obstacle avoidance in our model, a unique
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feature absent in the work presented in Ref. [18]. Another notable differentiation between our
study and [18] is manifested in the Pseudo code of the bi-directional adaptive Enhanced A*
algorithm (BAEA*). Our approach emphasizes the simplification and enhanced practicality
of the algorithm’s implementation, rendering it more straightforward and efficient compared
to the version presented in Ref. [18]. Another distinction between our study and the prior
work discussed in Ref. [18] lies in the context of application. The authors in Ref. [18] focused
on Unmanned Aerial Vehicles (UAVs), whereas our research considers mobile robotic
platforms. The secondary point of distinction between our study and [18] resides in the
dimensionality under consideration. In Ref. [18], the authors conducted their research in the
three-dimensional space, explicitly encompassing the (x, y and z) coordinates. In contrast,
our investigation is grounded in a two-dimensional context, exclusively focusing on the
(x, y) plane.

In Section 2, we will elucidate the Path Planning Utilizing the Enhanced A* Algorithm.
Section 3 will expound on the Bi-directional Adaptive Enhanced A* Algorithm, providing an
in-depth analysis of its algorithmic procedures and key steps. Section 4 will develop
Q-Learning extensively by providing a detailed clarification of its principle and method.
Section 5 will present the experimental findings and results. The concluding section, Section 6,
will encapsulate the study’s conclusions and delineate avenues for future research.

2. Path planning using enhanced A* algorithm
The effectiveness of the A* algorithm depends heavily on the design of the heuristic function
h (n). It plays a crucial role in guiding the search process by providing an estimate of the cost
of reaching the goal from the current node. A good heuristic function helps the algorithm
efficiently explore the most promising paths first, leading to faster and more optimal
pathfinding. Equation (1) defines the heuristic function f(N) in the A* algorithm.

fðNÞ ¼ gðNÞ þ hðNÞ (1)

Equation (1) consists of two main components g(N) and h(N):

(1) f(N): Cumulative cost estimate from the initial point to the destination via the current
node n.

(2) g(N): The real cost from the starting point to the current node n, reflecting the
accumulated cost up to this point.

(3) h(N): Estimated cost from the current node n to the goal. This is a heuristic estimate
and is typically problem-specific.

2.1 Adaptive weight strategy
The A* algorithm can be dynamically adjusted to improve its performance in different
problems and environments. This is achieved by adjusting the weights of the cost function
g(N) and heuristic function h(N). When the weight of the heuristic function h(N) is minimized,
the A* algorithm behaves more like Dijkstra’s algorithm. This means that it will explore the
entire state space to find the optimal path, but will take longer to converge. When the weight
of the cost function g(N) is minimized, the A* algorithm behaves more like a best-first-search
algorithm (BFS). This means that it will quickly find a path to the goal but it may not be the
optimal path. TheA* algorithm can strike a balance between the convergence speed and path
quality by dynamically adjusting the weights of g(N) and h(N). The proposed algorithm for
mobile robot (MR) path planning uses an adaptive weight strategy to dynamically adjust the
weights g(N) and h(N). The goal is to determine a high-quality path promptly.

The evaluation function f(N) is defined in equation (2):
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fðNÞ ¼ ωg * gðNÞ þ ωh* hðNÞ (2)

where ωg and ωh are the weight factors of g(N) and h(N), respectively.

Weight factors ωg and ωh were determined using the following equations (3) and (4):

ωh ¼

8><
>:

ωmax ; D≥Deff

ωmax � ωmax � ωminð Þ * 1� D

Deff

� �
; D < Deff

(3)

ωg ¼ 1 (4)

where ωmax and ωmin represent the maximum and minimum preset values for ωh,
respectively. Deff is a threshold value that defines the boundary between obstacle-free and
obstacle-rich areas.

In obstacle-free areas (D ≥ Deff), ωh is set to its maximum value to accelerate convergence.
In obstacle-rich areas (D < Deff), ωg is adaptively increased to find an optimal path within the
obstacles. This adaptive weight strategy allows the algorithm to find high-quality paths
promptly, even in complex environments with many obstacles.

2.2 Real cost g(N)
To account for the specific constraints of MRs, such as distance cost and the need for a
collision-free path, the expression for the cost function g(N) was modified as shown in
equation (5):

gðNÞ ¼ ω1 * gobsðNÞþω2 * gcostðNÞ (5)

where:

(1) gobs(N) is the cost from the current position N to the nearest obstacle. It relies on the
distance between the robot and the obstacle.

(2) gcost(N) is the Manhattan distance cost from the current position N to the initial node
Pinit.

(3) ω1 and ω2 are the weights for the obstacle cost and distance cost factors, respectively.

The objective function g(N) in Equation (5) is minimized by the optimization process.
The cost function is defined in equation (6):

(1) If D is greater than Deff, the cost is zero.

(2) If x is less than or equal to Deff, the cost is Deff/D.

Threat area cost (gobs(N))

gobs Nð Þ ¼
0; D > Deff

Deff

D
; D≤Deff

8><
>: (6)

(1) gobs(N) represents the threat area cost of the robot.

(2) D signifies the distance between the robot and the obstacle.
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(3) Obstacles are characterized by one radius: Deff for the detection radius.

These equations were used to calculate the energy consumption and threat area costs
associated with the path planning of the robot.

2.3 Heuristic function h(N)
In contrast to the traditional A* algorithm, the heuristic function h(N) in this approach was
determined using the Manhattan distance metric rather than relying on the Euclidean metric.
This choice is based on the observation that the optimization results vary depending on the
geometric measurement used for the heuristic function. A heuristic function based on the
Euclidean distance tends to explore a larger space, which can lead to increasedmemory usage
and computational load owing to the expensive square-root calculations involved.
Conversely, a heuristic function grounded in the Manhattan distance metric provides a
more accurate exploration of space with a reduced number of superfluous nodes. This makes
the Manhattan distance a better choice for ensuring the efficiency and path quality of the
proposed algorithm as shown in equation (7).

hðNÞ ¼ jnx � goalxj þ
��ny � goaly

�� (7)

where:

(1) (nx, ny) are the coordinates of the node N.

(2) (goalx, goaly) are the coordinates of the goal node Pgoal.

The proposed algorithm uses a modified cost function and the Manhattan distance heuristic
to improve the efficiency and path quality of MR path planning.

3. Bi-directional adaptive enhanced A* algorithm
The algorithm operates by conducting simultaneous forward and reverse searches of the
initial and target positions. It maintains two OPEN tables and two CLOSED tables to track
the explored nodes and their costs. Figure 1 shows the ongoing search process, which
continues until the forward and reverse search converge to amutual point, indicating a viable
path is identified. The BAEA* algorithm uses problem-specific heuristics to guide forward
and backward search processes. The paths are formulated with explicit collision verification,
and the heuristic insights share convergence at the midpoint. The forward and backward
search carefully explore the spatial domains guided by the heuristics and ensure the validity
of their edges by validation of collisions.

Start point Forward
research

Goal pointBackward
research

Meeting
area

Start point

Goal point

Start point

Goal point

Source(s): Authors’ own creation

Feasible area

BAEA*Algorithm

Figure 1.
Bidirectional BAEA*
schematic (Backward
and Forward research)
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Throughout the process, the algorithm considers various parameters denoted as ω1, ω2, Deff,
ωmax, ωmin and so on, which influence the search strategy and the quality of the path found.
The algorithm is designed for efficient path planning in complex environments, and the use of
Q-learning elements suggests that it may incorporate machine-learning techniques to
enhance its performance. The detailed steps of the Bi-directional Adaptive Enhanced A*
algorithm are in Algorithm 1.

Algorithm 1. Bi-directional Adaptive Enhanced A* algorithm

Input:
• Initial positions of the mobile robot (MR) and 

the goal

• parameters ω1, ω2, Deff, ωmax, ωmin

Output:
Path node

Begin
While neither the forward nor reverse searches converged 

do
1. In the forward OPEN table, insert the forward 

search node.

2. In the reverse OPEN table, insert the reverse 

search node.

3. Build the parent-child relationship by moving the 

lowest-cost node from the forward OPEN table to 

the forward CLOSED table.

4. Build the parent-child relationship by moving the 

lowest-cost node from the reverse OPEN table to 

the reverse CLOSED table.

5. If neither the forward nor reverse searches have 

converged, then 

Continue; 

Else
exit the loop.

End if
End while
End 

The path node can be obtained by following the parent-child relationship from the goal node
to the initial node. ThemodifiedA* algorithm is a bidirectional search algorithm that includes
the advantages of theA*. It is particularlywell suited formobile robot path planning, as it can
efficiently find paths that avoid obstacles and satisfy other constraints, such as energy
consumption and time limits. The algorithm operates by maintaining two search trees: one
for the forward search and one for the reverse search. The forward search starts from the
initial position of the MR and searches for a goal. The reverse search starts with the goal and
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searches for the initial position. At each step, the algorithm selects the node with the
minimum cost from the OPEN table of the forward search or the reverse search. The selected
node is thenmoved to the CLOSED table of the corresponding search tree and its parent-child
relationship is established. The algorithm terminates when the forward and reverse search
trees meet, or when a certain number of iterations have been reached. The path node can then
be obtained by following the parent-child relationship from the goal node to the initial node.

4. Path planning based on Q-learning algorithm
Our research on Q-learningmethodology is based on previous research described in previous
published work [19], in which we provide a comprehensive overview of the paradigms of
machine learning. Consequently, we succinctly present the Q-learning procedure. To get a
complete understanding, we directed readers to our previous publication [19].

The Q-learning algorithm contains four fundamental components: state, action, reward
and Q-table. These elements are complexly defined in the application of the Q-learning
algorithm. Reinforcement Learning (RL) is a paradigm of machine learning that aims to
acquire optimal action through interactions within the environment to achieve a
predetermined goal. Its structural framework consists of the following integral components:

(1) State (s): indicates the current configuration of the environment as the agent perceives
it. It encapsulates all the relevant information needed for decision-making processes.

(2) Action (a): The selection of possible choices provided by the agent in each state.
Action initiates a transition from one state to another and shapes the agent’s
trajectory.

(3) Reward I: Represents the immediate feedback received by the environment when an
action is performed in a particular state. The reward quantifies the desirable action of
the agent. For example, if the robot is near an obstacle, it will get a negative reward,
while arriving at the destination will get a positive reward. The distance between the
agent and the nearest obstacle is symbolized by dobs, where C1 represents a fixed
parameter that represents the reward to achieve the goal state (the negative value
of�C1 is associated with the proximity of the obstacle). The reward function includes
additional scenarios, i.e. the proximity and distance to the target position. If the
agent’s position is closer from the target position without colliding to the target
position, the agent receives a slight positive reward. On the contrary, if the agent’s
position moves further away from the target position without colliding, the agent
receives amarginal negative reward. Dynamic rewards can be calculated as shown in
equation (8).

r st; atð Þ ¼

C1; St ¼ Sg

−C1; dobs ¼ 0

C2 *
dtþ1

D
; dt < dtþ1; dobs ≠ 0

−C2 *
dtþ1

D
; dt > dtþ1; dobs ≠ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(8)

ACI



where dt represents theManhattan distance between the agent and the target, dobs represents
the minimum distance between the agent and the nearest obstacle, C1 and C2 represent a
specific reward parameter obtained after the agent’s actions.

(1) Q-function (Q): Estimate the value associated with performing specific actions within
each State. It helps in decision-making processes by assessing the value of action and
guiding the agent towards optimal choices.

The RL system operates through In iterative framework, allowing agents to interact with the
environment, observe the state, perform actions, receive rewards, and adjust their policies
and value functions based on these interactions. Themain goal is for agents to obtain the best
policies to maximize cumulative rewards over time. This learning process combines
exploration (experience with new actions) and exploitation (use of the knowledge acquired to
select the most beneficial actions), thus improving the agent’s decision-making capabilities.

The Q-Learning algorithm, defined as Algorithm 2, orchestrates autonomous navigation in a
predefined search area, using task nodes, starting points and target points as inputs to define
objectives within the environment. The initialization stages include the setup of a Q-table,
obstacle data, and an action space that defines a feasible agent action. The algorithm tries to
iterate through an exploration-exploitation loop until a goal state is reached, by organizing the
state space initialization for each iteration. In this cycle, the BAEA* algorithm determines the
selection of actions based on current state and Q-values. The execution of the selected action
leads the agent to a newstate andgenerates feedback in the formof the rewards received and the
resulting state. Afterward, Q-values are updated by combining the Q-learning formula to
consider parameters such as learning rate α and discount factor γ. State transitions occur as the
algorithmprogresses and iterate until the final conditions aremet. The integration of Q-learning
and BAEA* promotes efficient path planning and learning-driven decision-making, enabling
autonomous agents to navigate and learn in complex environments.

Algorithm 2. Q-Learning
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This iterative algorithm explores and refined Q values dynamically by observing rewards
and state transitions. Its objective is to improve the efficiency of the planning of robot paths
within the designated search area by considering both obstacles and task nodes.

5. Experimental results
To evaluate the effectiveness of the proposed algorithm, some experiments were conducted.
The mobile robot was initially placed at coordinates (20, 20), and the target destination and
the threat zones located as it is indicated in Table 1. To evaluate the efficacy of our proposed
approach, we carried out comparative assessments. The assessment of path planning was
conducted based on mission and environmental details, as outlined in Table 1.

Figure 2 represents each experimental scenario, the mission particulars, denoted by initial
coordinates, were kept consistent with the mobile robot (MR) commencing at (20, 20). The

Environment Target Obstacles

Env1 (390, 400) (50, 79, 10); (155, 210, 15)
Env2 (450, 470) (75, 90, 5); (145, 250, 15); (234, 327, 10)
Env3 (510, 430) (110, 200, 5); (215, 324, 10); (320, 460, 10); (400, 510, 5)
Env4 (480, 530) (135, 150, 5); (233, 267, 10); (345, 377, 5); (462, 525, 10); (513, 457,15)
Env5 (340, 500) (125, 224, 10); (247, 355, 5); (378, 429, 10); (483, 562, 5)

(529, 436,5); (511, 428,15)

Source(s): Authors’ own creation

Table 1.
Target and obstacles in
different test
environments

Figure 2.
Grid environment
(a) Environment 1,
(b) Environment 2,
(c) Environment 3,
(d) Environment 4, and
(e) Environment 5
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environmental parameters encompassed diverse maps and zones featuring obstacles (O),
which were characterized by the positions of obstacle sources and their corresponding radii,
expressed in the format (x, y and r1). Figure 2 shows the grid environment layout, indicated as
(a) environment 1, (b) environment 2, (c) environment 3, (d) environment 4 and (e) environment
5, each environment is characterized by the specific obstacles strategically placed in the grid.

The success rate is a crucial metric for determining the effectiveness of learning
algorithms in training. If the mobile robot hits obstacles or fails to reach the destination
within the highest number of iterations allowed during learning, the whole training session is
regarded as a failure. In general, it is assumed that as more training episodes are added
performance would improve, resulting in a larger success rate. To evaluate the impact of
training on the success rate, measurements are taken every 100 episodes. This involves
counting the number of successful episodes during training and subsequently calculating the
success rate.

Figure 3 shows the training’s influence on the success rate. Figure 3 indicates that the
success rate consistently increases with additional episodes. At the outset, with just 80
training episodes, the success rate is 58%. As the algorithm undergoes hundreds of training
iterations, reaching 600 training episodes, the success rate substantially improves to nearly
90%, a notably high success rate. The success rate experiences rapid growth in the early
stages and remains at a high level beyond 600 episodes.

Algorithm performance is considered another important evaluation metric for training
effectiveness which is path length. Based on Figure 4, the initially observed path length
exhibited a high value due to the mobile robot’s lack of knowledge of the environment, which
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led it to prioritize exploration. As the number of training iterations increased significantly, the
planned path length progressively decreased and ultimately converged to a stable state. In
conclusion, the length of the planned path decreases as the algorithm is trained. This means
that the algorithm is finding shorter and more efficient paths. Overall, the training results
show that the proposed algorithm is effective in learning to plan paths in complex
environments.

To rigorously assess the efficacy and accuracy of the proposed fusion methodology,
distinct environmental configurations denoted as Env1, Env2, . . ., and Env5 were
individually instantiated as separate map instances. To facilitate equitable comparisons
among our proposed algorithm, denoted as the Bi-directional adaptive Enhanced A*
algorithm (BAEA*), and the Bi-directional adaptive A* algorithm (BAA*) [18], we
meticulously maintained uniformity in experimental conditions by subjecting each
algorithm to precisely 40 iterations, and the algorithmic parameters were meticulously
tuned through preliminary experimentation. To alleviate potential variability in the
experiments, each algorithm was executed ten times within each distinct scenario. The
evaluation criteria centered on the planned path’s length and the mission’s success rate, with
success being defined by missions devoid of any collisions.

Figure 5 illustrates the operational outcomes of our proposed BAEA* algorithm across
five discrete scenarios. These findings exemplify the proficient navigation capabilities of
BAEA*, particularly in traversing complex terrains featuring diverse threat zones while
avoiding collisions. It effectively maneuvers through areas with local minima to reach target
positions surrounded by obstacles. Compared to the BAA* algorithms, our proposed
algorithm showcases superior adaptability to diverse environments, ensuring secure task
completion.

Figure 6 provides a comparative analysis of the planned path lengths between the two
algorithms, underscoring BAEA*’s notable advantage in achieving shorter and more
consistent path planning. The culmination of these experiments collectively validates that
our proposed BAEA* algorithm surpasses traditional path-planning approaches, delivering
superior performance, stability, and robustness.

Table 2 depicts the comparative performance of two algorithms, BAA* and BAEA*,
across various environmental conditions. Each algorithm’s effectiveness is assessed based

on two keymetrics: the cost of the generated pathmeasured in nodes, and the time taken to
compute the solution in seconds. Across all tested environments, BAEA* consistently
demonstrates superior performance compared to BAA*. This superiority is notably reflected
in the lower cost of the paths produced by BAEA*, indicating that it finds solutions that
traverse fewer nodes in the search space. For example, in Environment 1, BAEA* achieves a
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cost of 103 nodes, while BAA* incurs a higher cost of 110 nodes. This trend persists across all
environments, with BAEA* consistently yielding lower path costs compared to BAA*.
Additionally, BAEA* exhibits slightly faster computational times across most environments
compared to BAA*. While the differences in execution times are relatively small, they still
contribute to BAEA*’s overall efficiency advantage. For instance, in Environment 1, BAEA*
completes the computation in 20.9 seconds, whereas BAA* takes slightly longer at 21.3
seconds. This pattern continues in subsequent environments, with BAEA* consistently
showcasing marginally quicker execution times than BAA*. The improved performance of
BAEA* can be attributed to its adaptive exploration strategy, which allows it to dynamically
adjust its search process based on environmental conditions and task complexities. By
intelligently exploring the search space, BAEA* can efficiently navigate through the
environment and find high-quality solutions while minimizing computational overhead. In
summary, the results clearly indicate that BAEA* offers superior performance over BAA* in
terms of solution quality and computational efficiency across a range of environmental
settings. This underscores the effectiveness of adaptive exploration techniques in enhancing
the efficacy of path planning algorithms.

Figure 7 shows the path generated by two different path planning algorithms: (a) BAA*
and (b) BAEA*. The two solutions obviously exhibit favorable characteristics; however, it
can be observed that BAEA* produces a particularly smooth and short path in combination
with BAA*.
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Methods Environment Cost (node) Time(sec)

BAA* Environment 1 110 21.3
BAEA* 103 20.9
BAA* Environment 2 124 22.7
BAEA* 109 21.4
BAA* Environment 3 137 23.8
BAEA* 128 23.5
BAA* Environment 4 145 26.1
BAEA* 133 25.6
BAA* Environment 5 170 29.3
BAEA* 147 26.2

Source(s): Authors’ own creation
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6. Conclusion
A novel algorithm Bi-directional Adaptive Enhanced A* algorithm (BAEA*) was proposed
based on [18]. Our proposed algorithm for mobile robot path planning offers several
significant advantages. Firstly, it excels in efficiency, enabling real-time path identification.
Secondly, it exhibits the capability to discern paths that not only avoid obstacles but also
adhere to various constraints, enhancing safety and precision. Moreover, the algorithm
demonstrates robustness in navigating through environmentally changeable surroundings,
adapting effectively to alterations in the environment. Lastly, its scalability is a key asset,
allowing it to be applied seamlessly to large and intricate environments, making it a versatile
solution for a wide range of practical applications.

We tested our new algorithmBAEA* against the algorithmBAA*.We used five different
environments, each with different obstacles and threat zones. We ran each algorithm 40
times in each environment to get an accurate comparison. We evaluated the algorithms on
two criteria: the length of the path they planned and the success rate of the mission (i.e.
whether the mobile robot reached its destination without colliding with an obstacle or threat
zone). Our algorithm outperformed the other algorithm on both criteria. It was able to plan
shorter and more stable paths, and it had a higher success rate in all five environments. This

Figure 7.
Smooth path generated
by (a) BAA*,
(b) BAEA*
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shows that our algorithm is a better choice for path planning in complex and challenging
environments.

Looking ahead, our research will focus on several key areas: (1) Dynamic obstacle
avoidance, as the current work exclusively deals with static obstacles, introducing dynamic
obstacles to the path planning process to enhance its complexity. (2) Transitioning our
method from simulation to practical implementation on real-world robots, acknowledging
that the ideal conditions assumed in this paper may not align with the complexities and
uncertainties inherent in real-life environments.
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