Index

Accuracy, 51	Big data (BD), 17–18, 116, 207, 264
Activation functions, 43	anatomy, 123–126
Actuators, 140, 148	definitions in health sector, 18
Adaptive boosting (AdaBoost), 48–49	methods and technology progress
Administrative data, 79	in, 118–120
Affordable Care Act, 120	needs in health sector, 18–19
Affymetrix algorithm, 131	Big data analytics (BDA) (see also
Air quality, 99–101	Computer-aided big
Alcoholism, 231	healthcare data analytics;
Amazon Web Services, 21	Predictive big data
American Recovery and Reinvestment	analytics in healthcare),
Act (ARRR), 117	17–18, 56, 59–61, 66–67,
American Telemedicine Association	118
(ATA), 247	achievements, 71
Analytical tools, 4	analysis, 62–71
Annual Health Survey (AHS), 63	applications in health care, 4–15
Apache Pig, 21	challenges, 23–24, 71–72
Apollo TeleHealth Services (ATHS),	concept and emergence of big
250	data, 59
Arduino, 142	curing cancer, 9–10
Artificial intelligence (AI) (see also	data as fuel of modern economy,
Business intelligence (BI)),	57–59
32, 57, 66, 94, 207, 224	EHRs, 19
Artificial neural network (ANN),	EMRs, 19
234–235, 267–269	health care analytics environment,
ATMEGA328P microcontroller,	19
141–142, 144	historical perspective, 65-66
Automatic tomography, 174	and intelligence, 2–4
Autumn eats, 229–230	internet of things, 20
Averaging, 49–50	need for security and a mechanism
	to reducing fraud, 11–12
Bagging technique, 40, 49	objectives, 61
"Banyan of Knowledge" system, 56	opportunities in health through
Barometric pressure, 102	BDA use, 21–23
Base learners (see First-level learners)	research methodology, 61
Bayes theorem, 35, 270–271	sensor data, 19–20
Bell's palsy, 174, 176	sources of data, methods, and
Beta-blockers, 206	challenges, 4–6

strategies to overcoming challenges	Cells, 224–225
of BDA in health sector,	Central facial palsy, 174
24–25	Chi-square
techniques, tools, and technologies	algorithm, 38
in health sector, 20–21	test, 210
Big Data to Knowledge (BD2K), 119,	Chip, 142
127	Chronic facial paralysis, 177
Big Healthcare Data (BHD), 119	Chronic kidney disease (CKD), 276
BMP180 Breakout, 102	Citizen-consumer, 57
Body mass index (BMI), 272	City Block Distance (see Manhattan
Boosting, 48–49	distance)
Bootstrap aggregation (see Bagging	Classification algorithms
technique)	activation functions, 43
Botulinum toxin, 177	bagging, 49
Breast cancer (BC), 190	boosting, 48–49
related work on BC prediction,	chi-square algorithm, 38
190–192	CNN and RNN, 47
Breastfeeding, 231	combination methods, 49-50
Brownian movement, 101	cost function, 41–42
Business intelligence (BI), 153, 155	data mining in health care, 32–33
contribution, 154–155	decision trees, 37–38
data warehouse design, 160–161	E-health, 52–53
dataset, 161–162	ensemble learning, 47–48
ETL process, 163	gradient descent algorithm, 47
evolution, 156	KNN, 33–34
in healthcare industry and benefits,	linear activation function, 43
156–157	logistic regression, 40-41
implementation, 167–170	model evaluation, 50-52
literature survey, 157–159	Naïve Bayes algorithm, 34–35
problem identification, 159	neural networks, 42–43
vision, 154	pruning, 39
workflow, 159	random forest algorithm, 39-40
Business models of telehealth,	ROC curve, 52
249–252	sigmoid function, 41
	SVM, 35–37
C4.5 decision tree algorithm	Clinical decision support (CDD), 116
technique, 275	Clinical trials, 80
Cadmium Sulfide (CdS), 143	Cloudera, 21
Cancer (see also Breast cancer (BC)),	Cluster analysis, 20
227	Collaborative Assessment and
Carbohydrates, 226, 231	Recommendation Engine
deficiency, 231	(CARE), 131
Carbon filter, 100	Combination methods, 49–50
Carbs (see Carbohydrates)	Committee-based learning, 48
CART techniques, 40	Complex carbohydrates, 226
Cassandra, 84	Computational fluid dynamics, 59

Computer-aided big healthcare	Diabetes mellitus (DM), 204, 227
data analytics (see also	age group and gender distribution,
Smart nursery with health	212
monitoring system)	experimental setup, 211
anatomy of big data, 123–126	future scope, applications, and
benefits of BHD analytics, 126-127	limitations, 217–220
BHD applications in real clinics,	insulin consumption, 213–216
127–131	literature survey/previous findings,
methods and technology progress	209–211
in big data, 118–120	novelty in work, 216–217
motivation, 120–123	recommendations, 220
Conductivity sensor, 101	study and analysis, 211
Confusion matrix, 51–52	Diagnostic analytics, 56
Congestive heart failure (CHF), 47	Dietary fiber, 227
Convolution, 235	Digital disease surveillance, 80
Convolution(al) neural networks	Dimension table, 160
(CNNs), 47, 235–237	Disease level of patient, 176
Coronary artery disease (CAD), 206	District Level Household Survey
Correlation matrix, 154, 159, 167	(DLHS), 63
Cosine distance, 34	Doctor Insta, 252
Cost function, 41–42	Dynamic programming, 66
CRDC tool, 10	
Cross-facial re-innervation processes,	E-health, 13, 52–53
178	Education, 14
	Electrocardiogram (ECG), 116
Data	Electroencephalogram (EEG), 116
data-citizens, 57	Electromyography (EMG), 116, 174
data-driven economy, 57	Electronic health records (EHR), 2,
as fuel of modern economy,	6–7, 19, 76, 83, 116, 156,
57–59	248, 264
mining, 20, 32–33, 66, 264	Electronic medical records (EMR),
quality, structure, and accessibility,	19, 77–78, 116
22	Electronic patient records (EPRs), 118
set, 104	Electronic wellbeing records (EWRs),
Data warehouse (DW), 154	117
DCM education tool, 210	Emerging technological ecosystem, 66
Decision trees, 37–39, 158–159, 168,	Enhanced Multiclass Support Vector
272	Machine (EMSVM), 191
Deep learning, 42, 234–238	Ensemble
Deming's PDCA Cycle, 61	learning, 47–48
Descriptive analytics, 56, 67	model, 275
DHT11 module, 143, 146	Entropy, 37
Diabetes (see Diabetes mellitus (DM))	Error matrix (see Confusion matrix)
Diabetes distress (DD), 210	Euclidean distance, 33–34
Diabetes management self-efficacy	European Union (EU), 59
(DMSE), 210	Evidence-based decision-making, 22

Executive Information Systems (EIS), 156	Forest optimization algorithm (FOA).
Expression quantitative trait loci	Fraud detection, 22
(EQTLs), 131	Frequency table, 37
Extraction, transformation, and	riequency tuoie, 57
loading process (ETL	G1 Dispensaries, 251
process), 155, 163	GDC tool, 9
eXtreme Gradient Boosting algorithm	GEneralizable Medical Information
(XGBoost algorithm), 49	Analysis and Integration
ExxonMobil Research and	System (GEMINI), 129
Engineering Company	Genetic algorithm (GA), 190
(EMRE), 58	Genome Analysis ToolKit (GATK),
F1 score, 52	Genome-wide association study
Facial palsy, 173–175	(GWAS), 131
comparative study of existing	Genomics, 78
solution, 178–181	Gestational diabetes, 204
levels, 185	Gini importance, 40
literature survey, 175–176	Gini index, 38
problem identification, 177	Global Pulse project, 119
proposed solution, 181–183	Glocal Digital Dispensaries,
pros and cons of solution, 183	250–251
Facial paralysis, initial surgery for,	Glocal Healthcare Systems Private
177	Limited, 250–251
Fact table, 160	Goodness of split criterion, 272
Failure of heart (see Congestive heart	Government agencies, 13
failure (CHF))	Gradient boosting, 48
False negative (FN), 51	Gradient descent algorithm, 42, 47
False positive (FP), 51	Graph analytics, 21
Fat(s), 226	Gross data product, 58
deficiency of, 231–232	Gross domestic product (GDP), 121
fat-soluble vitamins, 226	Grove–Gas Sensor, 99–100
Feature	
ranking, 193	Hadoop, 21
selection, 190	Hadoop distributed file system
Filtering, 105	(HDFS), 66, 84
First-level learners, 50	Hamming distance, 33–34
Flaccid paralysis, 177	Health Information Technology
Flattening, 237	(HIT), 117, 248
Food	Health Insurance Portability and
choices, 223	Accountability Act
dyes, 227	legislation, 23
effect of weather, 228	Health sector
role and value of nutrients,	BD definitions in, 18
224–227	BD needs in, 18–19
security, 230	Health-threat detection, 22

Healthcare, 14, 139, 155	Intensive care unit (ICU), 124
AI in, 207	Intergovernmental Panel Climate
analytics environment, 19	Change (IPCC), 95
applications of BD in, 208	International development, 13
big data applications in, 4–15	Internet of Things (IoT), 14–15,
data mining in, 32–33	19–20, 57, 94, 208
IoT in, 208	Intrusion detection and security
ML in, 207	system (IDS system), 141
predictive analytics in, 10–11	future scope, 148–149
technology in addressing	hardware assembly and
problem of integration,	implementation, 144–147
208–209	literature review, 140–141
Healthcare electronic record (HER),	system architecture, 141–144
116	working, 148
Healthy diet with balanced nutrients,	wermig, 1 to
223	Jaccard distance, 34
HEPA filter, 100–101	Jaql, 21
High blood pressure, 227	
HIT for Economical and Clinical	K-most similar data points, 34
Health (HITECH), 117	k-Nearest Neighbours (KNN),
Hold out method, 191	33–34, 233–234, 267,
Hospitalization, 276	269–270
House Brackman grading system,	Knowledge-based economy, 57
176	2
Hyperbolic tangent activation	Lab testing, 78
function, 45	Lazy learning KNN, 34
Hyperplanes, 36	Leaky rectified linear unit activation
	function (Leaky ReLU),
ID3 algorithm, 158	45–46
IECM algorithm, 183	Learning
Image	multiple classifier systems, 48
acquisition, 182	phase, 267
conversion to arrays, 105	Light-dependent resistor (LDR), 141
processing, 175	module, 142-143, 146
segmentation, 182–183	sensor, 94, 97–98
Information gain, 37–38	Linear activation function, 43
Information gain ratio (IGR), 191	Linear regression, 40–41, 272–273
Information technology (IT), 15, 125	Lipomics, 78
Infrared sensor (IR sensor), 142, 144	LitmusDx, 251
Infrastructure Plus Program, 119	LM35 gadget, 101
Instance-based KNN, 34	Logistic regression, 40–41, 273–274
Institute for Health Technology	
Transformation (IHTT),	Machine learning (ML), 21, 32, 42,
117, 120	66, 190, 207, 224, 233–234,
Insulin consumption, 213–216	265
Insurance, 14	classifiers, 193–194

Macronutrients, 226	Medical Termination of Pregnancy
Magnetic resonance imaging (MRI),	(MTP), 64
116, 174	Medicines, 231
Mahalanobis distance, 34	history of, 244
Mahout, 21	Medongo, 251
Majority voting, 50	Memory analytics, 66
Malnutrition, 230–231	Meta learner, 50
Mammography, 116	Metal oxide-semiconductor (MOS),
Man to machine interaction (M2M	142
interaction), 120	Microcontroller, 141–142
Manhattan distance, 33–34	Micronutrients, 226
Manufacturing, 14	MiCS-2714 Gas Sensor, 100
MapReduce, 21, 84	Migraine, 204–205
Margin in SVM, 36	Mineral(s), 227
Max pooling, 236–237	deficiency, 233
Meal classification and assessment	Minkowski distance, 34
of nutrients	Model
autumn eats, 229–230	evaluation, 50–52
carbohydrates, 231	selection, 50
deep learning, 234–238	Moisture sensor, 94, 98
fat deficiency, 231–232	Morphological processing, 183
food security, 230	Mosaic plot, 159, 167
future scope, 239–240	MQ2 Sensor, 99–100, 142, 145
life-threatening diseases caused	MQ9 Sensor, 100
by unhealthy food, 227	Multiple voxel pattern analysis
machine learning, 233–234	(MVPA), 209
malnutrition, 230–231	Multiway frequency analysis, 274
mineral deficiency, 233	Mutation, 244
problem identification, 230	"My Kardio" framework, 256
proposed solution, 238–239	N. II. D. G.ID. 100 101
protein deficiency, 232	Naïve Bayes (NB), 190, 194
role and value of nutrients in	algorithm, 34–35
food, 224–227	classification modeling, 270–272
spring eats, 229	classifier, 34–35
summer eats, 228	National Family Health Survey
vitamin deficiency, 232	(NFHS), 63
effect of weather on food, 228	National Health Service (NHS), 127
winter eats, 229	National Institute of Health (NIH),
Mean decrease in impurity (MDI)	119
(see Gini importance)	NCI tool, 10
Media, 14	Nerve transfer, 178
Median, 195–196	Neural networks, 21, 42–43
filtering, 183	activation functions, 43
Medical	hyperbolic tangent activation
claims, 79–80	function, 45
imaging, 3	Leaky ReLU, 45–46

linear activation function, 43	PM 2.5 Sensor, 100
ReLU function, 45	Population health, 22
sigmoid activation function, 43	Positron emission tomography (PET)
Softmax activation function, 46–47	116
Neurosynaptic communications,	Potentiometric pH meter, 98
249–250	Power Grid Data, 4
Neurosynaptic Communications	PPD42NJ Particle Sensor Unit, 99
Private Ltd (NCPL), 249	Precision, 51
Noise removal methods, 105	Prediabetes, 204
Non-essential nutrients, 227	Predictive analytics, 56, 67, 220
Non-parametric KNN, 34	in health care, 10–11
Non-suicidal trauma factor (NSSI),	Predictive big data analytics in
209	healthcare (see also Big
Normal AC Filter, 101	data analytics (BDA)), 76
Numeric predictions, 36	advantages, 84–85
Nutrients, 223–224	areas of application, 81–84
role and value of nutrients in food,	challenges, 86–88
224–227	claims data, 79–80
22 1 22 1	clinical data, 77–79
Obesity, 205, 227	clinical research data, 80
Object-oriented programs, 56	data-related concerns, 87
Omics, 78–79	infrastructural concerns, 86
Oozie, 21	IT infrastructure benefits, 84
Optical imaging, 116	managerial benefits, 85
Optimized delivery in telehealth care,	operational benefits, 84–85
252	organization-related concerns, 88
Osteoporosis, 227	organizational benefits, 85
Ostcoporosis, 227	patient–generated data, 80–81
Palsy, 173	security/privacy concerns, 87–88
Partial facial paralysis, 174	sources of big data in healthcare,
Patient	77–81
	strategic benefits, 85
engagement, 8–9	Predictive healthcare, 77
health record, 116	
patient-centric care, 22	Predictive modeling in health care
predication, 3	data analytics, 264–266
Patient disease (Pdis), 161	applications, 274–277
Pattern recognition technique, 21	disease diagnosis and treatment
Peripheral facial palsy, 174	selection, 274–276
Personalized healthcare, 77	health care management, 276–277
pH sensor, 94, 98	reducing health care costs, 277
Photograph objects, 183	techniques for, 267–274
Photoresistor, 97–98	Prescription claims, 79–80
Photosynthesis, 96	Prescriptive analytics, 56, 67
PIG Latin, 84	Preservatives, 227
PlantVillage, 104	Pressure sensor, 102
Plurality voting, 50	"Process of transformation", 60

Protein(s), 226	Security, 11, 139–140
deficiency, 232	Semi-supervised learning, 193
Proteomics, 78	Sensor(s), 140
Pruning, 39	data, 19–20
PS2 Pollen Sensor, 99	Shannon's entropy, 37
Public health, 22	Sigmoid activation function, 43
1 done hearth, 22	Sigmoid function, 41
Radionuclide imaging, 116	Simple averaging, 49
Random decision forest, 193	
	Simple carbohydrates, 226
Random forest (RF), 190–191, 193, 275	Smart nursery with health monitoring
	system
algorithm, 39–40	data acquiring and preprocessing,
classifier, 40	104–105
experimental results, 197–200	data modeling, 105–106
machine learning classifiers,	literature survey, 95–103
193–194	methodology, 103–106
proposed methodology, 196–197	results, 110–112
statistical analysis, 194–196	solution, 106–110
Raspberry Pi, 141	Smartwatches (see Wristwatches)
Recall, 51–52	Social media data, 80
Receiver Operating Characteristics	Soft voting, 50
curve (ROC curve), 52	Softmax activation function, 46–47
Recommender system, 131	Software for Flexible Integration of
Rectified linear unit activation	Annotation (SoFIA), 131
function (ReLU function),	Soil pressure, 102
45, 236	Spatial analysis, 21
Recurrent Neural Networks (RNN),	Spring eats, 229
47, 237–238	Sqoop, 21
Relay, 143–144	Stacking, 50
ReMeDi Nova, 250	Staffing levels, 5
ReMeDi Platform, 250	Standard deviation (SD), 196
ReMeDi Solution, 249–250	Statistical analysis, 194–196
Research and development	Stress, 204
professionals (R&D	Sulfur dioxide, 96
professionals), 56	Summer eats, 228
Resizing images, 105	Supervised learning, 37, 193, 265
Right to Information Act (2005), 71	Support vector machines (SVM),
Risk-scoring, 79	35–37, 190, 192–194, 234,
Root mean square error (RMSE),	256, 267
191, 196	advantages and disadvantages,
Root relative squared error (RRSE),	234
191	Support vectors (SV), 234
	Synkinesis, 177
Search Engine Data, 4	
Second-level learner (see Weak	Tanimoto distance, 34
learners)	Telecardiology, 248

Teledermatology, 248	Valance, 125
Telehealth, 243, 246–247	Validity, 126
barriers to, 252–257	Value, 126
business models, 249–252	Variance, 196
early civilization, 245	Variety, 4, 18, 124
evolution, 246	Velocity, 4, 18, 124
history of medicine, 244	Veracity, 125
methodology, 257	Visualization, 126
modern history, 245–246	Vitamin(s), 226–227
optimized delivery in telehealth	deficiency, 232
care, 252	Volatility, 126
pre-historic ERA, 244-245	Volume, 4, 18, 123
process of evolution, 244	Voting, 50
results, 257–261	Vulnerability, 126
Telemedicine, 12–13, 77, 247–249	
Telenephrology, 248	Water, 226
Teleneurology, 248	water-soluble vitamins, 227
Teleobstetrics, 249	Weak learners, 48
Teleoncology, 249	Wearable sensors, 81
Teleophthalmology, 248	Weighted averaging, 50
Telepathology, 249	Weighted voting, 50
Telepsychiatry, 248	Whole-genome association study
Telerehabilitation, 249	(WGAS), 131
Temperature sensor, 101	Winter eats, 229
Tension-type headaches (TTH), 205,	Wireless sensor network (WSN), 141
215	Wisconsin Breast Cancer Data
Text mining, 66	(WBCD), 190
medical records, 11	World Health Organization (WHO),
Thermography, 116	122, 275
Tin dioxide (SnO ₂), 142	Wristwatches, 116
True negative (TN), 51	
True positive (TP), 51	X-ray
Type 1 diabetes (T1D), 204, 204,	computed tomography, 116
216	radiography, 116
Ultrasonography (US), 116	YOLO Health, 251
Undernourishment, 231	
Unsupervised learning, 193, 265	Zookeeper, 21, 84